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Abstract 

Let G be a finite group, and let g ∈ G. We say that the element g is a vanishing element in G if 
there exists an irreducible character χ of G such that χ(g) = 0. In this paper, we establish a number 
of results on the vanishing elements of a finite group. 
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1 Introduction and Preliminary 

Throughout this paper, the term group always means a group of finite order, and by simple groups 
we mean nonabelian simple groups. The letter G always denotes a group, and π(G) denotes the set 
of all prime divisors of the order |G| of a group G. For an element x ∈ G, o(x) denotes the order of 
x. In addition, we use also the following notation: 

πe(G) = {o(x)| x ∈ G}, and π∗(G) = πe(G) − {1}. 

V an(G) = {x ∈ G| there exists χ ∈ Irr(G) such that χ(x) = 0}. 
V o(G) = {o(x)| x ∈ V an(G)}. 
Γ(G): The vanishing prime graph of G(see [2]). 
V (Γ(G)): The set of vertices of Γ(G). 
n(Γ(G)): The number of connected components of Γ(G)). 
GK(G): The prime graph of G(the Gruenberg-Kegel graph of G) (see [3]). 
n(GK(G)): The number of connected components of GK(G). 

If GK(G) is disconnected, we denote by πi(G) the i′th connected component of GK(G), where 
i = 1, 2, · · · , n(GK(G)), and we suppose that 2 ∈ π1(G) if 2 is a vertex of GK(G). 

Let N be a set of positive integers. We put N |O = {x| x ∈ N and x is odd } and N |2 = {x| x ∈ 
N, x > 1 and x is a power of 2}. Assume that 2 ∈ N . Then we say that the period of 2 in N is m if 
2m = Max(N |2). 

All further unexplained notation is standard and is referred to [1], for example. 

Let g ∈ G. We say that the element g is a vanishing element of G if there exists an irreducible 
character χ of G such that χ(g) = 0. Clearly, V an(G) is the set of vanishing elements of G. By a 
classical theorem of W.Burnside, if G is a nonabelian group, then V an(G) is not empty (see [1, 6.13, 
p.76]). Hence, if G is a nonabelian group, then the set V o(G) of orders of vanishing elements of G is 
not empty. The set V o(G) encodes non-trivial information about the structure of G. Therefore, in 
[4], the following conjecture was put forward. 

Conjecture A: Let S be a simple group. If |G| = |S| and V o(G) = V o(S), then G ∼= S. 

Clearly, confirming this conjecture is an interesting topic. 

 
We define the V-recognition of a group G as follows. For an arbitrary subset v of the set of 

positive integers ≥ 2, we denote by h(v) the number of pairwise non-isomorphic groups G such that 
V o(G) = v. Given a group G, G is said to be V-recognizable if h(V o(G)) = 1, almost V-recognizable 
if 1 < h(V o(G)) < ∞, and non-V-recognizable if h(V o(G)) = ∞. 

Clearly, the following Problem B is also interesting. 



  

e 

 
 

 
Problem B: Which simple groups are V-recognizable? 

In this paper, we establish a number of results related to vanishing elements or Conjecture A, and 
we establish several results on Problem B 

In order to complete the proofs of results of the present paper, we first list several lemmas which 
will be used in the sequel. 

Lemma 1.1[5, Corollary A]. Assume that the order of every vanishing element of G can not be 
divided by a prime p. Then G has a normal Sylow p-subgroup. 

Let p be a prime divisor of |G|, and let χ ∈ Irr(G). We say that χ is of p-defect zero if p does not 
divide |G|/χ(1). If χ ∈ Irr(G) is of p-defect zero, then, for every element g ∈ G such that p divides 
o(g), we have χ(g) = 0 (see [6, (8.17), p.133]). 

Lemma 1.2[7, Corollary 2]. Let S be a simple group and assume that there exists a prime 
q such that S does not have an irreducible character of q-defect zero. Then q = 2 or 3 and S is 
isomorphic to one of the following groups: M12, M22, M24, J2, HS, Suz, Ru, Co1, Co2, BM and An 

with n ≥ 7. 

From Lemma 1.2 we get the following: 

Lemma 1.3.  Let S be a simple group, and assume that S is not isomorphic any one of 
the following groups:  M12, M22, M24, J2, HS, Suz, Ru, Co1, Co2, BM and An with n ≥ 7.  Then 
V an(S) = S − {1} and V o(S) = π∗(S). 

Lemma 1.4[8, LEMMA 2.7]. Let N be a normal subgroup of G, and let p be a prime divisor 
of |N |. If N has an irreducible character of p-defect zero, then every element of N of order divisible 
by p is a vanishing element of G. 

Lemma 1.5[8, THEOREM B]. Let G be a nonsolvable group. If Γ(G) is disconnected, then G 
has a unique nonabelian compose factor S. Moreover n(Γ(G)) ≤ n(GK(S)) unless G is isomorphic 
to A7. 

Lemma 1.6[8, Proposition 2.10]. Let S be a sporadic simple group, or an alternating group on 
n letters with n ≥ 8. Then S has an irreducible character φ which extends to Aut(S) and an element 
g of order 6 such that φ(g) = 0. 

Lemma 1.7[2]. Let G be a solvable group. Then n(Γ(G)) ≤ 2. Further, if n(Γ(G)) = 2, then 
two connected components of Γ(G) are complete graphs. 

Let N be a normal subgroup of G. It is well known that we can identity the irreducible 
characters of G/N with the irreducible characters of G that contains N in the kernel. 
So, it is obvious that the following Lemma 1.8 holds. 

Lemma 1.8[2, Remark 2.2]. Let N be a normal subgroup of a group G. The following state- 
ments are true: 

(i) If xN ∈ V an(G/N ), then xN ⊆ V an(G). 
(ii) Each element in V o(G/N ) is a factor of some element in V o(G). 

Lemma 1.9(see [8, Proposition 4.2]). Assume that V (Γ(G)) /= π(G). Then Γ(G) is connected. 

Lemma 1.10[8, Proposition 6.4].  Let S be a simple group. Then Γ(S) = GK(S), unless 
S ∼= A7. 

 

2 A result on vanishing prime graphs and its consequences 

By the definition of the vanishing prime graph Γ(G), we have 

V (Γ(G)) = {p| p is a prime and there exists an element m ∈ V o(G) such that p|m}. 

For two distinct vertices p, q ∈ V (Γ(G)), p and q are adjacent in Γ(G) if and only if there 
exists an element m ∈ V o(G) such that pq|m. 
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In this section, we first establish a theorem on a group G for which the vertex 2 

of the vanishing prime graph Γ(G) is an isolated vertex, and then we establish several 
consequences of this theorem, namely, Theorem 2.5 in the present section. 

Suppose that |V (Γ(G))| ≥ 2 and 2 ∈ V (Γ(G)). Clearly, 2 is an isolated vertex of Γ(G) if 
and only if each element of V o(G) is either an odd number or a power of 2. 

Proposition 2.1. Let G be a nonsolvable group. Then |V (Γ(G))| ≥ 3 and 2 ∈ V (Γ(G)). 

Proof. Suppose on the contrary that 2 /∈ V (Γ(G)), that is, the order of every vanishing 
element of G is not divisible by 2. Then by Lemma 1.1 G has a normal Sylow 2-subgroup, 
and thus by the Schur-Zassenhaus theorem and the odd order theorem we conclude that 
G is solvable, contradicting the hypothesis. So, 2 ∈ V (Γ(G)). If |V (Γ(G))| ≤ 2, then by 
Lemma 1.1 and the Burnside {p, q}-theorem we conclude that G is solvable, contradicting 

the hypothesis. So, we have |V (Γ(G))| ≥ 3. This completes the proof. 2 

The following Proposition 2.2 is obvious. 

Proposition 2.2. Let H be a group. Assume that H has a normal 2-subgroup P, and the order 
of each element of H is either an odd number or a power of 2. Then the order of each element of 
H/P is either an odd number or a power of 2 and πe(H)|O = πe(H/P )|O. 

Proposition 2.3. Let G be a nonsolvable group, and suppose that the order of each element of G 
is either an odd number or a power of 2. Then G/O2(G) is isomorphic to one of the following groups: 
L2(q), q = 2k with k ≥ 2 or q is a Fermat prime or Mersenne prime, or q = 9; Sz(2n+1), n ≥ 1; L3(4); 
A6.23 (using the notation in the Atlas[9]). 

Proof. Since the order of each non-identity element of G is either an odd number 
or a power of 2, CG(t) is a 2-group for every involution t of G. Then, noting that G is 
nonsolvable, by [10, III, Theorem 5] we conclude that G/O2(G) is isomorphic to one of 
the following groups: L2(q), q = 2k with k ≥ 2 or q is a Fermat prime or Mersenne prime, 
or q = 9; Sz(2n+1), n ≥ 1; L3(4); A6.23. This completes the proof. 2 

Theorem 2.4. Let G be a nonsolvable group, and let K be the maximal solvable normal subgroup 
of G. Assume that Γ(G) is disconnected. Then G has a normal series K < M ≤ G such that M/K 
is a simple group, G/K ≤ Aut(M/K) and G/M ≤ Out(M/K). Furthermore, one of the following 
statements holds: 

(1) M/K =∼ An with n ≥ 5. If n /= 6, then G/K ∼= An or Sn. If n = 6, then G/K is isomorphic 
one of the following groups: A6, S6, PGL(2, 6) and A6.23. Furthermore, if n ≥ 8, then 6 ∈ V o(G/K). 

(2) M/K is a simple group of Lie type, and π∗(M/K) = V o(M/K) ⊆ V o(G/K). 
(3) M/K is a sporadic simple group, and 6 ∈ V o(G/K). 

Proof. Since G is nonsolvable and Γ(G) is disconnected by the hypothesis, by Lemma 
1.5 G has a normal series 

1 ≤ K < M ≤ G 

such that M/K is a simple group, G/K ≤ Aut(M/K) and G/M ≤ Out(M/K). 
Since M/K is a simple group, by the classification of finite simple groups we conclude 

that M/K is isomorphic to either an alternating group An with n ≥ 5, or a simple group 
of Lie type, or a sporadic simple group. 

(i) Assume that M/K ∼= An with n ≥ 5. 

If n /= 6, then Aut(An) = Sn. Then, since M/K ≤ G/K ≤ Aut(M/K) and |Sn : An| = 2, 

we have that G/K =∼ An or Sn. If n = 6, by checking in the Atlas [9] we conclude that 
G/K is isomorphic one of the following groups: A6, S6, PGL(2, 6) and A6.23. 

If n ≥ 8, by Lemma 1.6 we conclude that 6 ∈ V o(G/K). So, (1) holds. 
(ii) Assume that M/K is a simple group of Lie type. 
By Lemma 1.2, Lemma 1.3 and Lemma 1.4, we have that π∗(M/K) = V o(M/K) ⊆ 

V o(G/K). So, (2) holds. 
(iii) Assume that M/K is a sporadic simple group. 
Since G/K ≤ Aut(M/K), by Lemma 1.6 we conclude that 6 ∈ V o(G/K). So, (3) holds, 

and the proof of the theorem is completed. 2 
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In the proof of the following Theorem 2.5, we shall use the following fact: Let G be 

a simple group of Lie type over the field GF (2n). Then Out(G) is a cyclic group of order 
n. 

Theorem 2.5. Let G be a nonsolvable group, and let K be the maximal solvable normal subgroup 
of G. Assume that 2 is an isolated vertex of Γ(G). Then G has a normal series K < M ≤ G such that 
M/K is a simple group, G/K ≤ Aut(M/K) and G/M ≤ Out(M/K). Furthermore, the following 
propositions (1), (2), (3) and (4) hold: 

(1) M/K is isomorphic to one of the following groups: A7; L2(q), q = 2n with n ≥ 2 or q is a 
Fermat prime or Mersenne prime, or q = 9; Sz(22n+1), n ≥ 1; L3(4). 

(2) Assume that K > 1, and that every non-identity element of G/K is vanishing in G/K. Let 

V be a normal subgroup of G such that V < K and K/V is a chief factor of G. Set G̃ = G/V . Then 
the following statements hold: 

(2a) Each element of π ∗ ( G̃)  is either an odd number or a power of 2. 

(2b) K̃ (=  K/V ) is an elementary abelian 2-group. 
(2c) Let p ∈ π(K) such that K /= Op(K). Then p = 2. In particular, if K is nilpotent, then 

K = O2(G). 

(2d) If each element in π ∗ (G̃) is a prime power, then G̃ / K̃  is isomorphic to one of the following 
groups: A5, L2(8), Sz(23) and Sz(25). 

(2e) πe(G̃)|O = πe(G/K)|O. 

(2f) M ax(πe(G̃)|2) ≤ Max(V o(G)|2) and M ax(πe(G̃)|2) ≥ Max(πe(G/K)|2). 

(3) The following statements hold: 
(3a) Assume that M/K =∼ L2(2n) with n ≥ 2. Then G/K = M/K. Furthermore, if the period of 

2 in V o(G) is 1, then K = 1 and G ∼= L2(2n). 

(3b) Assume that M/K =∼ Sz(22n+1) with n ≥ 1. Then G/K = M/K. Furthermore, if the period 

of 2 in V o(G) is 2, then K = 1 and G ∼= Sz(22n+1). 
(3c) Assume that M/K ∼= A7. Then G/K ∼= A7. 

(3d) Assume that M/K ∼= L2(7). Then G ∼= L2(7). 

(3e) Assume that M/K =∼ L2(17). Then G ∼= L2(17). 

(3f) Assume that M/K =∼ L3(4). Then G ∼= L3(4). 
(3g) Assume that M/K =∼ L2(9). Then G ∼= L2(9) or G ∼= A6.23. 

(4) If the period of 2 in V o(G) is 1, then G ∼= L2(2n) with n ≥ 2. 
 

Proof. Write G = G/K. Since 2 is an isolated vertex of Γ(G) by the hypothesis, each 
element in V o(G) is either an odd number or a power of 2, that is, the order of every 
vanishing element of G is either an odd number or a power of 2. Hence, by Lemma 1.8 
we conclude that each element in V o(G) is either an odd number or a power of 2. 

Since G is nonsolvable, by Proposition 2.1 we have that |V (Γ(G))| ≥ 3. Then, since 
2 is an isolated vertex of Γ(G), Γ(G) is disconnected. It follows by Theorem 2.4 that G 
has a normal series K < M ≤ G such that M (= M/K) is a simple group, G ≤ Aut(M ) and 
G/M ≤ Out(M/K). 

Notice that A5 =∼ L2(22) and A6 =∼ L2(32). Then, since each element in V o(G) is either 

an odd number or a power of 2, by Theorem 2.4 we conclude that either M ∼= A7, or M 
is isomorphic to a simple group of Lie type and the order of every non-identity element 
of M is either an odd number or a power of 2. Hence, by Proposition 2.3 we conclude 

that either M =∼ A7, or M is isomorphic to one of the following groups: L2(q), q = 2n with 
n ≥ 2 or q is a Fermat prime or Mersenne prime, or q = 9; Sz(2n+1), n ≥ 1; L3(4). So, (1) 
holds. 

Next, we prove (2). By the assumption of (2), we have G̃ = G/V . Clearly, K̃ (=  K/V ) 

is an elementary abelian p-group, where p is a prime. We have that G̃ / K̃  = G/V/K/V ∼= 
G/K. Then, by the assumption of (2) we conclude that every non-identity element of 

G̃ / K̃  is vanishing in G̃ / K̃ .  Hence, by Lemma 1.8 we have that 

(∗) G̃ − K̃ ⊆ V an(G̃), and π ∗(G̃) ⊆ V o(G̃ )  ∪ {p}. 

In addition, by Lemma 1.8 every element of V o ( G̃ )  is either an odd number or a power 

of 2. It follows that every element in π ∗ ( G̃ )  is either an odd number or a power of 2. So, 
(2a) holds. 
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Since every element in π ∗ (G̃ ) is either an odd number or a power of 2. by Proposition 

2.3 G̃ has a normal 2-subgroup Ũ such that G̃ / Ũ  is isomorphic to one of the following 
groups: L2(q), q = 2n with n ≥ 2 or q is a Fermat prime or Mersenne prime, or q = 9; 

Sz(2n+1), n ≥ 1; L3(4); A6.23. Then we conclude that Ũ = K̃ .  Hence, p = 2 and K̃ (=  K/V ) 
is an elementary abelian 2-group. So, (2b) hold. By (2b) we conclude that (2c) holds. 

Assume that each element in πe (G̃ ) is a prime power, then by [11, Theorem 1.7] we 

have that G̃ / O 2 ( G̃ )  is isomorphic to one of the following groups: A5, L2(8), Sz(23) and 

Sz(25). By (2b) it is obvious that K̃ = O2 (G̃ ). So, (2d) holds. 
Since K̃ is a normal 2-subgroup of G̃ and every element of πe (G̃ ) is either an odd 

number or a power of 2 (see (2a) and (2b)), by Proposition 2.2 we have πe (G̃) |O = 

πe (G̃/K̃ )|O = πe(G/K)|O . So, (2e) holds. 

Let x̃ ∈ G̃ be a non-identity element such that o ( x̃ )  is a power of 2. By Lemma 1.8 

every element of V o ( G̃ )  is a factor of some element of V o(G). Then, noting that p = 2, by 

(∗) we conclude that o ( x̃ )  is a factor of some element of V o(G), and thus Max(πe(G̃)|2) ≤ 

Max(V o(G)|2). Since G̃ / K̃  =∼ G/K, it is obvious that Max(πe(G̃)|2) ≥ Max(πe(G/K)|2). 

So,(2f) holds. This completes the proof of (2). 
 

Below, we prove (3). Set G = G/K. 
(i) Assume that M = M/K =∼ L2(2k), where k ≥ 2. 

Out(M )(= Out(L2(2k))) is a cyclic group of order k. Then, since G/M =∼ G/M ≤ Out(M ), 

G/M is a cyclic group of order m, where m|k. 
We will show that |G : M | is a power of 2(including the case when G = M ). Suppose 

on the contrary that |G : M | is not a power of 2. Then there exists a normal subgroup 
R of G such that M < R ≤ G and |R/M | = r( if k = 2n + 1, take R = G), where r is an 
odd number. M has an unique irreducible character(Steinberg character) χ such that 
χ(1) = |M |2 (see [12, Theorem 38.1,p.228]). Clearly, χ is invariant in G. It follows by [6, 
(11.22), p.186] that χ extends to R. So, there exists φ ∈ Irr(R) such that φ is of 2-defect 
zero, and thus by [6, (8.17), p.133] we conclude that every element of order 2s in R is a 
vanishing element of R, where s is an odd prime. Then by Lemma 1.4 we conclude that 
every element of order 2s in R is a vanishing element of G. Then, since each element in 
V o(G) is either an odd number or a power of 2, R does not have any element of order 2s, 
where s is an odd prime. Then by Proposition 2.3 R has a normal 2-subgroup U such 
that R/U is a simple group, and thus r = 2, a contradiction. Hence, |G : M | is a power of 
2, that is, |G/K : M/K| is a power of 2. Let r be any odd prime divisor of |G|. Then r is a 
prime divisor of |M | because |G : M | is a power of 2. By Lemma 1.2 M has an irreducible 

 
 

character θ of r-defect zero. Let ψ be an irreducible constituent of θG. Then ψ ∈ Irr(G) 
is of r-defect zero, and thus ψ(g) = 0 for any element of order 2r in G. Then, since each 
element in V o(G) is either an odd number or a power of 2, G does not have elements 
of order 2r, where r is any odd prime divisor of |G|. Then, noting that M ∼= L2(2k), 

by Proposition 2.3 we conclude that G/O2(G) is a simple group. Hence, since K is the 
maximal solvable normal subgroup of G, we have that O2(G) = O2(G/K) = 1 and G = M , 
that is, G/K = M/K. So, the first conclusion of (3a) holds. 

Now, we assume that the period of 2 in V o(G) is 1, that is, Max(V o(G)|2) = 2. We 
will show that K = 1. Suppose on contrary that K > 1, and let V be a normal subgroup 

of G such that V < K and K/V is a chief factor of G. Set G̃ = G/V . We have that 

L2(2k) =∼ M/K = G/K. It follows by [13, 8.27, p.213] that 

πe(G/K) = {1, 2,all factors of 2k − 1 and 2k + 1}. 

By Lemma 1.3, every non-identity element of G/K is vanishing in G/K. Hence, by (2) 
we get that 

πe(G/V ) = πe (G̃ ) = {1, 2, all factors of 2k − 1 and 2k + 1} = πe(L2(2k)). 

Then by [14] we have that G/V =∼ L2(2k). On the other hand, we have that G/K ∼= L2(2k). 
It follows that |G/K| = |G/V | and K = V , a contradiction. Hence, we have that K = 1 

and G =∼ L2(2k). So, the second conclusion of (3a) holds. This completes the proof of 
(3a). 

(ii) Assume that M/K = M =∼ Sz(22n+1). 
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Out(M/K)(= Out(Sz(2n+1)) is a cyclic group of order 2n + 1. It follows that G/M ( ∼=  
G/M ≤ Out(M/K) = Out(M )) is a cyclic group of odd order. M has a unique irreducible 
character χ such that χ(1) = |M |2 (see [15, Chap. XI, Theorem 5.10, p.216]). Then by 
using the same argument as in the third paragraph of (i)(G replaces R), we conclude 
that G/K = G = M = M/K. So, the first conclusion of (3b) is true. 

Now, we assume that the period of 2 in V a(G) is 2, that is, Max(V o(G)|2) = 4. We have 
that πe(G) = πe(M ) = πe(Sz(22n+1)) = {1, 2, 4, all factors of (22n+1 − 1), (22n+1 − 2n+1 + 1) and 
(22n+1 + 2n+1 + 1)} (see [16]). By using the same argument as in the final paragraph of (i) 
and by [16], we conclude that K = 1 and G = M = Sz(22n+). So, the second conclusion of 
(3b) is true. Then (3b) holds. 

(iii) Assume that M/K = M ∼= A7. 

By Theorem 2.4 either G/K =∼ A7 or G/K ∼= S7. Since each element V o(G/K) is either 

an odd number or a power of 2, by checking in the Atlas [9] we conclude that G/K ∼= A7, 
that is, (3c) holds. 

(iv) Assume that M = M/K ∼= L2(7). 
We have that G ≤ Aut(M ) = Aut(L2(7)). Since the order of every element in V o(G) is 

either an odd number or a power of 2, by checking in the Atlas [9] we conclude that 

G/K = G = M =∼ L2(7).  Note that V o(G/K) = V o(L2(7)) = π∗(L2(7) = {2, 4, 3, 7} (see [6, 
p.289]). 

We will show that K = 1. Suppose on the contrary that K > 1. Let V be a normal 

subgroup of G such that V < K and K/V is a chief factor of G. Set G̃ = G/V . Since 

G/K ∼= L2(7), by Lemma 1.3 every non-identity element of G/K is vanishing in G/K, and 

so we can apply (2). By (2) we have that each element in πe (G̃ )  is either an odd number 

or a power of 2, and πe (G̃ )|O = πe(G/K)|O = πe(L2(7))|O = {3, 7}. Hence, each element in 

πe (G̃ ) is a prime power. Then by (2) we conclude that G̃ / K̃  ∼/= L2(7)(see (2d)). Then, 

since G̃ / K̃  =∼ G/K, G/K /∼= L2(7), a contradiction. So, we have that K = 1 and G ∼= L2(7), 
that is, (3d) holds. 

(v) By using the same argument as in (iv) we conclude that (3e) and (3f) hold. 
(vi) Assume that M = M/K ∼= L2(9). 

By Theorem 2.4 we have that G/K is isomorphic to one of the following groups: 
A6, S6, PGL(2, 9) and A6.23. Since each element in V o(G/K) is either an odd number or 

a power of 2, by checking in the Atlas[9] it is easy to see that either G/K ∼= A6 or 

G/K ∼= A6.23. 
Assume that G/K =∼ A 6 ( ∼=  L2(9)). By using the same argument in the final paragraph 

of (iv), we conclude that K = 1 and G ∼= A6 

Assume that G/K =∼ A6.23. Note that every non-identity element of A6.23 is vanishing 

in A6.23 (see the Atlas[9]), and so G/K satisfies the assumption of (2). Then by using 

the same argument in the final paragraph of (iv), we conclude that K = 1 and G ∼= A6.23. 
Then we have proved that (3g) holds. This completes the proof of (3). 

Finally, we prove (4).  Then we assume that the period of 2 in V o(G) is 1.  We 
have proved that either M =∼ A7, or M is isomorphic to one of the following groups: 
L2(q), q = 2k or q is a Fermat prime or Mersenne prime, or q = 9; Sz(2n+1), n ≥ 1; L3(4). 

Suppose that M/K = M =∼ A7.  By (3) we have that G/K ∼= A7.  By checking in 

Atlas[9],we have that 4 ∈ V o(G/K), and thus by Lemma 1.8 we get that the period of 2 

in V o(G) is greater than 1, a contradiction. Hence, M/K /∼= A7. It follows that M/K is 
isomorphic to a simple group of Lie type. Then by Lemma 1.2, Lemma 1.3 and Lemma 
1.4, we conclude that every non-identity element of M/K is a vanishing element of G/K. 
Then, if a Sylow 2-subgroup of M/K is not elementary abelian, then G/K has a vanishing 
element of order 4, and so by Lemma 1.8 we conclude that the period of 2 in V o(G) is 
greater than 1, a contradiction. So, we conclude that a Sylow 2-subgroup of M/K is an 

elementary abelian 2-group, and thus M/K =∼ L2(2k) with k ≥ 2. Then by (3) we have 

that G =∼ L2(2k), that is, (4) holds. This completes the proof of the theorem. 2 

Corollary 2.6[17, Main Theorem].  Assume that V o(G) = V o(L2(2a)) with a ≥ 2. Then 

G = L2(2a). 

Proof. Let K be the maximal solvable normal subgroup of G. By the hypothesis, 
Lemma 1.3 and [13, 8.27, p.213], we have that V o(G) = V o(L2(2a)) = π∗(L2(2a)) = {2, all 
factors of 2a − 1 and 2a + 1} − {1}. Hence, Γ(G) is disconnected and n(Γ(G)) = 3. Then 
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by Lemma 1.7 we conclude that G is nonsolvable.  Clearly, 2 is an isolated vertex in 

Γ(G), and the period of 2 in V o(G) is 1. It follows by Theorem 2.5(4) that G ∼= L2(2k). 
Then by Lemma 1.3 we have that π∗(G) = V o(G) = V o(L2(2a)) = π∗(L2(2a)), and thus 

e e 

πe(G) = πe(L2(2a)).  Hence, by [14] we conclude that G ∼= L2(2a).  This completes the 

proof. 2 

By Corollary 2.6, the simple group L2(2a) with a ≥ 2 is V-recognizable. 

Theorem 2.7. Let G be a nonsolvable group, and let K be the maximal solvable normal subgroup 

of G. If 3 /∈ V (Γ(G)) and 2 is an isolated vertex of Γ(G), then G/K =∼ Sz(22n+1) with n ≥ 1. 
 

Proof. Put G = G/K. By the hypothesis and Theorem 2.5, G has a normal subgroup 
M such that K ≤ M ,M = M/K is a simple group.  By the hypothesis we have that 
3 /∈ V (Γ(G)). Then by Lemma 1.1 we have that 3 / ||M |. A simple group S with 3 / ||S| is 
isomorphic to Sz(2n+1) with n ≥ 1(see [15, 3.7 Remarks, p.188]). Hence, M =∼ Sz(22n+1) 

with n ≥ 1. Then by Theorem 2.5(3) we conclude that G/K =∼ Sz(22n+1) with n ≥ 1. This 

completes the proof of the theorem. 2 

Theorem 2.8. Let G be a nonsolvable group. Assume that G satisfies the following three condi- 
tions: (i) 3 /∈ V (Γ(G)), (ii) 2 is an isolated vertex of Γ(G), and (iii) The period of 2 in V o(G) is 2. 

Then G ∼= Sz(22n+1) with n ≥ 1. 

Proof. Let K be the maximal solvable normal subgroup of G. By Theorem 2.7 we 

have that G/K =∼ Sz(22n+1), where n ≥ 1.  Then, since the period of 2 in V o(G) is 2, 

by Theorem 2.5(3) we conclude that G =∼ Sz(22n+1). This completes the proof of the 
theorem. 2 

Corollary 2.9[18, Main Theorem].  If V o(G) = V o(Sz(22n+1)), where n ≥ 1, then G ∼= 

Sz(22n+1). 

Proof. Since Sz(22n+1) is a simple group of Lie type, by Lemma 1.3 we have that 
V o(Sz(22n+1)) = π∗(Sz(22n+1)). We have that πe(Sz(22n+1)) = {1, 2, 4, all factors of (22n+1 −1) 
and (22n+1 − 2n+1 + 1), and (22n+1 + 2n+1 + 1)}(see [16]). In addition, 3 does not divide 
|Sz(22n+1)|(see [15, 3.7 Remarks, p.188]). Then, since V o(G) = V o(Sz(22n+1)) by the 
hypothesis, we conclude that 2 is an isolated vertex in Γ(G), 3 /∈ V (Γ(G)) and the period 

of 2 in OV (G) is 2. It follows by Theorem 2.8 that G ∼= Sz(22m+1), where m ≥ 1. Then 
we have that V o(Sz(22m+1)) = V o(G) = V o(Sz(22m+1)). On the other hand, we have that 
V o(Sz(22m+1)) = π∗(Sz(22m+1)) and V o(Sz(22n+1)) = π∗(Sz(22n+1)). Hence, we have that 

e e 

πe(Sz(22n+1)) = πe(Sz(22m+1)) = πe(G), and thus G =∼ Sz(22n+1) (see [16]). This completes 

the proof. 

By Corollary 2.9, the simple group Sz(22n+1) is V-recognizable. 

By Theorem 2.5 we get the following. 

Corollary 2.11. Let G be a nonsolvable group. The following two propositions hold: 
(1) If the period of 2 in V o(G) is 1 and Γ(G) = Γ(L2(2n)), where n ≥ 2, then G ∼= L2(2n). 

(2) If the period of 2 in V o(G) is 2 and Γ(G) = Γ(Sz(22n+1)), then G =∼ Suz(22n+1). 

The following theorem is an improvement of [19,Theorem 1.1]. 

Theorem 2.12. Assume that G is nonsolvable and every element in V o(G) is a prime power. 
Then the following propositions (1),(2) and (3) hold: 

(1) If O2(G) = 1, then G is isomorphic to one of the following groups: A7, A5, L2(7), L2(8), L2(9), 
L2(17), L3(4), Sz(8), Sz(32) and A6.23. 

(2) If O2(G) /= 1, then one of the following holds: 

(2a) The period of 2 in V o(G) is greater than 1 and G = [N ]A, where A ∼= A5 
∼= SL2(4) and 

N (= O2(G)) is the direct product of minimal normal subgroups of G, each of which is of order 24 and 
as a G/N-module is isomorphic to the natural GF (22)SL2(22)-module.(We denote by [A]B the split 
extension of its normal subgroup A by a complement B.) 

(2b) The period of 2 in V o(G) is greater that 1, G/O2(G) =∼ L2(8), and O2(G) is the direct 

product of minimal normal subgroups of G, each of which is of order 26 and as a G/O2(G)-module is 
isomorphic to the natural GF (23)SL2(23)-module. 
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(2c) The period of 2 in V o(G) is greater than 2, G/O2(G) =∼ Sz(23), and O2(G) is the direct 
product of minimal normal subgroups of G, each of which is of order 212 and as a G/O2(G)-module 
is isomorphic to the natural GF (23)Sz(23)-module of dimension 4. 

(2d) The period of 2 in V o(G) is greater than 2, G/O2(G) =∼ Sz(25), and O2(G) is the direct 

product of minimal normal subgroups of G, each of which is of order 220 and as a G/O2(G)-module 
is isomorphic to the natural GF (25)Sz(25)-module of dimension 4. 

(3) If the period of 2 in V o(G) is 1, then G ∼= A5 or L2(8). 

Proof. Let K be the maximal solvable normal subgroup of G. By the hypothesis and 
Proposition 2.1,G is nonsolvable, 2 ∈ V (Γ(G)), and 2 is an isolated vertex in Γ(G).So, we 
can apply Theorem 2.5. 

By Theorem 2.5, G has a normal series K < M ≤ G such that M/K is a simple group, 
G/K ≤ Aut(M/K) and G/M ≤ Out(M/K). Furthermore, M/K is isomorphic to one of the 
following groups: A7; L2(q), q = 2n with n ≥ 2 or q is a Fermat prime or Mersenne prime, 
or q = 9; Sz(22n+1), n ≥ 1; L3(4). Hence, either M/K =∼ A7 or M/K is a simple group of Lie 

type. 
Next, we show that if K > 1, then K is a 2-group. Suppose that K > 1 and K is not a 

2-group. Then G has a normal series 1 ≤ T < R ≤ K ≤ G such that R/T is a chief factor 
of G of odd order. Suppose T /= 1. Considering the group G/T , by induction we may 
assume that K/T is a 2-group, and so R/T is a 2-group, a contradiction. Hence, T = 1 
and R is an elementary abelian r-group, where r is an odd prime. Considering the group 
G/R, by induction we may assume that K/R is a 2-group. It follows that K = RP , where 
P is a 2-group. By Burnside {p, q}-theorem, G has an s-element g, where s is a prime with 
r /= s /= 2. Assume that M/K =∼ A7. By Theorem 2.5(3) we have that G/K = M/K ∼= A7. 
Noting that π(A7) = {2, 3, 5, 7}, V o(A7) = {2, 3, 4, 5, 7} and π∗(A7) = {2, 3, 4, 5, 6, 7}(see the 

Atlas[9]), by Lemma 1.8 we conclude that gK ⊆ V an(G). Assume that M/K is a simple 
group of Lie type. Then by Lemma 1.3 and Lemma 1.8 we have that gK ⊆ V an(G))(We 
may assume that g ∈ M ). So, in any case, we have that gK ⊆ V an(G). Then, since every 
element in V o(G) is a prime power, < g > acts fixed-point freely on K = RP , and so K is 
nilpotent. Hence, by Theorem 2.5(2) K is a 2-group, a contradiction. So, K is a 2-group 
and K = O2(G). 

We already know that either G/K =∼ A7 or M/K is a simple group of Lie type. We 
discuss two cases separately as follows.. 

(I) G/K ∼= A7 

Suppose K > 1. Then K = O2(G) and G/O2(G) =∼ A7. We have that V o(G/O2(G)) = 

V o(A7) = {2, 3, 4, 5, 7} and πe(G/O2(G)) = πe(A7) = {1, 2, 3, 4, 5, 6, 7}. A7 has an irreducible 
character of 3-defect zero (se the Atlas[9]), and so evert element in G whose order is 
divisible by 3 is vanishing in G.  Hence, letting x be any 3-element of G, xO2(G) ∈ 
V an(G/O2(G)), and so by Lemma 1.8 we have that xO2(G) ⊆ V an(G). It follows that 
the order of every element in xO2(G) is a prime power. Hence, letting P be a Sylow 
3-subgroup of G, P acts fixed-point freely on O2(G), and thus P is a cyclic group, con- 
tradicting the fact that a Sylow 3-subgroup of A7 is an elementary abelia group of order 
9. So, K = 1 and G ∼= A7. 

(II) M/K is a simple of Lie type. 
In this case, by Lemma 1.2, Lemma 1.4 and Lemma 1.8, we conclude that every 

element of π∗(M/K) is a prime power, and so M/K is isomorphic to one of the following 

groups A 5 ( =∼  L2(4)), L2(7), L2(8), L2 (9)(∼= A6), L2(17), Sz(8) and Su(32) (see [11, Theorem 
1.7]). It follows from Theorem 2.5(3) that either (1) holds or one of the following cases 
occurs: 

(i) O2(G) /= 1, the period of 2 in V o(G) is greater than 1, and G/O2(G) ∼= A 5 ( ∼=  L2(4)). 
(ii) O2(G) /= 1, the period of 2 in V o(G) is greater than 1, and G/O2(G) ∼= L2(8). 

(iii) O2(G) /= 1, the period of 2 in V o(G) is greater than 2, and G/O2(G) ∼= Sz(23). 

(iv) O2(G) /= 1, the period of 2 in V o(G) is greater than 2, and G/O2(G) ∼= Sz(25). 

In addition, by Lemma 1.3 and Lemma 1.8 we conclude that G − O2(G) ⊆ V o(G), and 
so every element in πe(G) is a prime power. Then by [11,Theorem 1.7] we conclude that 

one of (2b),(2c) and (2d) hold. Now, we assume that G/O2(G) ∼= A 5 ( ∼=  L2(4)). Then we 
have that |G| = 2m · 3 · 5. Let x ∈ G be of order 3. By Lemma 1.3 and Lemma 1.8 we have 
that xO2(G) ⊆ V an(G) and x2O2(G) ⊆ V an(G). It follows that < x > acts point-fixed freely 
point on O2(G). Then it is obvious that CG(< x >) =< x >, and thus by [11, Theorem 
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1.7] and [20, Theorem] we conclude that G = [N ]A, where A ∼= A5 
∼= L2(4) and N (= O2(G)) 

is the direct product of minimal normal subgroups of G, each of which is of order 24 and 
as a G/N -module is isomorphic to the natural GF (22)SL2(22)-module. Furthermore, by 
Theorem 2.5(3) we have that the period of 2 in V o(G) is greater than 1. So, (2a) holds. 
Then (2) holds. 

By Theorem 2.5(4), (3) holds. This completes the proof of the theorem. 2. 

 

3 Three basic theorems 

The following three theorems are useful for the investigation of Conjecture A and 
Problem B. 

Theorem 3.1. Let S be a simple group with S /=∼ A7, and assume that GK(S) is disconnected and 

n(GK(S)) ≥ 3. Assume that V o(G) = V o(S). Then G has a normal series K < M ≤ G such that 
K is the maximal solvable normal subgroup of G, M/K is a simple group and G/K ≤ Aut(M/K). 
Moreover, π(G) = π(S), Γ(G) = Γ(S) = GK(S) and n(GK(S)) ≤ n(GK(M/K)). In addition, the 
following two statements hold: 

(1) If S is not isomorphic to any one of the following groups: M12, M22, M24, J2, HS, Suz, Ru, Co1, 
Co2, BM and An with n ≥ 7, then V o(G/K) ⊆ πe(S). 

(2) If S and M/K are not isomorphic to any one of the following groups: M12, M22, M24, J2, HS, Suz, 
Ru, Co1, Co2, BM and An with n ≥ 7, then πe(M/K) ⊆ πe(S). 

Proof. Since S is a simple group and S /=∼ A7, by Lemma 1.10 we have that Γ(S) = 
GK(S).  Then, since V o(G) = V o(S), we have that Γ(G) = Γ(S) = GK(S).  It follows 
by the hypothesis that Γ(G) is disconnected and n(Γ(G)) ≥ 3.  Then by Lemma 1.7 

we conclude that G is nonsolvable. G /=∼ A7; otherwise, V o(A7) = V o(G) = V o(S), and 

thus by Theorem 2.5 we have that S ∼= A7 (see also [19, Theorem 1.4]), contradicting 
the hypothesis. It follows by Theorem 2.4 and Lemma 1.5 that G has a normal series 
K < M ≤ G such that K is the maximal solvable normal subgroup of G, M/K is a simple 
group, G/K ≤ Aut(M/K), and n(GK(S)) ≤ n(GK(M/K)). By Lemma 1.9 we have that 
π(G) = V (Γ(G)) = V (Γ(S)) = π(S). Hence, π(G) = π(S). 

Assume that S is not isomorphic to any one of the following groups: M12, M22, M24, J2, 
HS, Suz, Ru, Co1, Co2, BM and An with n ≥ 7. Then by Lemma 1.3 we have that V o(G) = 
V o(S) = π∗(S). By Lemma 1.8 we have that each element of V o(G/K) is a factor of some 
element of V o(G). Then each element of V o(G/K) is a factor of some element of π∗(S), 
and so V o(G/K) ⊆ π∗(S), that is, (1) holds. 

Assume that S and M/K are not isomorphic to any one of the following group- 
s: M12, M22, M24, J2, HS, Suz, Ru, Co1, Co2, BM and An with n ≥ 7. Then by Lemma 1.3 
we have that V o(M/K) = π∗(M/K) and V o(S) = π∗(S).  Furthermore, by Lemma 1.2 

e e 

and Lemma 1.4 we conclude that V o(M/K) ⊆ V o(G/K).  Hence, by (1) we have that 
π∗(M/K) = V o(M/K) ⊆ V o(G/K) ⊆ π∗(S). Then, πe(M/K) ⊆ πe(S), that is, (2) holds. This 

e e 

completes the proof of the theorem. 2 

Theorem 3.2. Let S be a simple group. Assume that n(GK(S)) = 2 and there exists a connected 
component ρ of GK(S) such that ρ is not a complete graph. Suppose that V o(G) = V o(S). Then G 
has a normal series K < M ≤ G such that K is the maximal solvable normal subgroup of G, M/K 
is a simple group and G/K ≤ Aut(M/K). Moreover, π(G) = π(S), Γ(G) = Γ(S) = GK(S) and 
n(GK(S)) ≤ n(GK(M/K)). In addition, the following two statements hold: 

(1) If S is not isomorphic to any one of the following groups: M12, M22, M24, J2, HS, Suz, Ru, Co1, 
Co2, BM and An with n ≥ 7, then V o(G/K) ⊆ πe(S). 

(2) If S and M/K are not isomorphic to any one of the following groups: M12, M22, M24, J2, HS, Suz, 
Ru, Co1, Co2, BM and An with n ≥ 7, then πe(M/K) ⊆ πe(S). 

Proof. Since n(GK(S)) = 2 by the hypothesis, we have that S /=∼ A7 because n(GK(A7)) = 
3 (see the Atlas[9]). Hence by Lemma 1.10 we have that Γ(S) = GK(S). Then, since 
V o(G) = V o(S) by the hypothesis, we have that Γ(G) = Γ(S) = GK(S), and so by the 
hypothesis we have that n(Γ(G)) = 2 and Γ(G) has a connected component ρ such that ρ 
is not a complete graph. Hence, by Lemma 1.7 we know that G is nonsolvable. G /∼= A7; 
otherwise, V o(G) = V o(A7) = {2, 3, 4, 5, 7} and n(Γ(G)) = 4, a contradiction. Then, by using 
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the same argument as in the proof of Theorem 3.1 we conclude that the theorem holds. 
2 

Theorem 3.3. Let S be a simple group, and assume that S satisfies the following two conditions: 
(i) S is not isomorphic any one of the following groups: M12, M22, M24, J2, HS, Suz, Ru, Co1, Co2, BM 

and An with n ≥ 7; (ii) If πe(G) = πe(S), then G ∼= S. Then the following proposition (*) holds: 

(*) Assume that π(G) = π(S), V o(G) = V o(S) and G/K =∼ S, where K is the maximal solvable 
normal subgroup of G, then K = 1 and G ∼= S. 

Proof. Suppose that K > 1. Let V be a normal subgroup of G such that V < K and 

K/V is a chief factor of G. Set G̃ = G/V . Clearly, G̃ / K̃  =∼ G/K ∼= S, and K̃ (= K/V ) is an 
elementary abelian p-group, where p ∈ π(G) = π(S). By the hypothesis and Lemma 1.3 
every non-identity of S is a vanishing element of S, that is, π∗(S) = V o(S). Then every 

non-identity of G̃ / K̃ ( =∼  S) is a vanishing element in G̃ / K̃ ,  and so by Lemma 1.8 we have 
that 

G̃ − K̃ ⊆ V an(G̃ ).  

It follows that π ∗ (G̃ ) ⊆ V o ( G̃ )  ∪ {p}, where p ∈ π(G) = π(S). By Lemma 1.8, every element 

in V o ( G̃ )  is a factor of some element in V o(G)(= V o(S) = π∗(S)). Hence, π ∗ (G̃ ) ⊆ π∗(S)). 
e e e 

On the other hand, since G̃ / K̃  =∼ S, we have that π∗(S) ⊆ π∗(G̃). Therefore, we get that 
e e 

πe (G̃ ) = πe(S). Then by the hypothesis we have that G/V = G̃ =∼ S. Then, since G/K ∼= S, 

we get that V = K, a contradiction. So, K = 1 and G ∼= S. The proof is finished. 2. 

 

4 Several results related to Conjecture A 

In this section, we will use theorems 3.1, 3.2 and 3.3 to establish several results 
related to Conjecture A. For this, we first give a table about simple K3-groups. Let 
S be a simple group. If |π(S)| = n, then S is called a simple Kn-group. If S is a 

simple K3-group, then S is isomorphic to one of the following groups: A 5 ( ∼= L2(22)), A 6 ( ∼= 
L2(32)), L2(7), L2(8), L2(17), L3(3), U3(3) and U4(2) (see [21, p.12]). By checking in the Atlas 
[9], we obtain the following Table 1. 

Table 1  Simple K3-groups 
 

G |G| π∗(G) = V o(G) 
e n(Γ(G)) = n(GK(G)) 

A5 22 · 3 · 5 {2, 3, 5} 3 
L2(7) 23 · 3 · 7 {2, 3, 4, 7} 3 
L2(8) 23 · 32 · 7 {2, 3, 7, 9} 3 
L2(17) 23 · 32 · 17 {2, 4, 8, 3, 9, 17} 3 
L3(3) 24 · 33 · 13 {2, 3, 4, 6, 8, 13} 2 
U3(3) 25 · 33 · 7 {2, 3, 4, 6, 7, 8, 12} 2 
U4(2) 26 · 34 · 5 {2, 3, 4, 5, 6, 9, 12} 2 

A6 23 · 32 · 5 {2, 3, 4, 5} 3 

 
Let p1, · · · , pr be distinct primes, and let |G| = pa1 · · · par · n, where n is a {p1, · · · , pr }′- 

1 r 
number. We write |G|{p ,···,p } = pa1 · · · par and |G|p = pa1 . 

1 r 1 r 1 1 

Theorem 4.1.  Assume that |G|{3,5} = |L2(31)|{3,5} and V o(G) = V o(L2(31)).  Then G ∼= 
L2(31). 

 
Proof. We have that |L2(31)| = 25·3·5·31 and π∗(L2(31)) = V o(L2(31)) = {2, 3, 4, 5, 8, 15, 16, 31} 

(see the Atlas [9]).  Clearly, GK(L2(31)) has three connected components: π1 = {2}, 
π2 = {3, 5} and π3 = {31}. Since V o(G) = V o(L2(31)) by the hypothesis, by Theorem 3.1 
we conclude that G has a normal series K < M ≤ G such that K is the maximal solv- 
able normal subgroup of G, M/K is a simple group and G/K ≤ Aut(M/K). Moreover, 
π(G) = π(L2(31)) = {2, 3, 5, 31}, Γ(G) = Γ(L2(31)) = GK(L2(31)) and n(GK(M/K)) ≥ 3. Notice 
that 2 is an isolated vertex of Γ(G)(= GK(L2(31)), and so we can use Theorem 2.5. 

Clearly, π(M/K) ⊆ {2, 3, 5, 31}. Then either |π(M/K)| = 3 or π(M/K) = {2, 3, 5, 31}. We 
discuss the two cases separately as follows. 
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(I) |π(M/K)| = 3. 
In this case, M/K is a simple K3-group. By the hypothesis we have that |G|{3,5} = 

|L2(31)|{3,5} = 3 · 5. Then, noting that n(GK(M/K)) ≥ 3 and π(M/K) ⊆ {2, 3, 5, 31}, by 

Table 1 we conclude that M/K =∼ A 5 ( ∼= L2(4)). Hence by Theorem 2.5(3) we have that 

G/K ∼= A5.It follows that |G/K| = 22 · 3 · 5 and π(K) ⊆ {2, 31}. Let x be any element of G of 
order 3. By Lemma 1.3 and Lemma 1.8 we have that xK ⊆ V o(G)(= {2, 3, 4, 5, 8, 15, 16, 31}). 
Then, since 2 and 31 are isolated vertices of Γ(G)(= GK(L2(31))), < x > acts fixed-point 
freely on K, and thus K is nilpotent. Hence, by Theorem 2.5(2) we get that K = O2(G). 
Then we have that π(G) = π(A5) = {2, 3, 5}, contradicting the fact that 31 ∈ π(G). 

(II) π(M/K) = {2, 3, 5, 31}. 

In this case, by Table 1 in [22] we have that either M/K ∼= L2(31) or M/K ∼= L3(5). If 

M/K =∼ L3(5), then |M/K| = 25 · 3 · 52 · 31(see the Atlas[9]), and 3 · 5 = |G|{3,5} ≥ |M/K|{3,5} = 
3 · 52, a contradiction. Therefore, we have that M/K ∼= L2(31). Since G/K ≤ Aut(M/K), 

either G/K =∼ L2(31) or G/K ∼= L2(31).2 (see the Atlas[9]). Suppose that G/K ∼= L2(31).2. 
Then 6 ∈ V o(G/K) (see the Atlas[9]), and so by Lemma 1.8 we conclude that 6 is a factor 

of some element in V o(G)(= {2, 3, 4, 5, 8, 15, 16, 31}), a contradiction. Hence, G/K ∼= L2(31). 

We know that,for a group H, if πe(H) = πe(L2(31)), then H ∼= L2(31) (see [23, Theorem 

2.7]). Therefore, by Theorem 3.3 we conclude that K = 1 and G ∼= L2(31). This completes 
the proof of the theorem. 2 

By Table 1 in [22] and by checking in the Atlas[9], we get the following Table 2. 

Table 2 Simple groups G with π(G) = {2, 3, 5, 11}. 
 

G |G| V o(G) V (Γ(G) n(Γ(G) 
L2(11) 22 · 3 · 5 · 11 {2, 3, 5, 6, 11} {2, 3, 5, 11} 3 
M11 24 · 32 · 5 · 11 {2, 3, 4, 5, 6, 8, 11} {2, 3, 5, 11} 3 
M12 26 · 33 · 5 · 11 {2, 3, 4, 5, 6, 8, 10, 11} {2, 3, 5, 11} 2 
U5(2) 210 · 35 · 5 · 11 {2, 3, 4, 5, 6, 8, 9, 11, 12, 15, 18} {2, 3, 5, 11} 2 

 
Theorem 4.2. The following two propositions hold: 
(1) Assume that |G|11 = |L2(11)|11 and V o(G) = V o(L2(11)). Then G ∼= L2(11); 

(2) Assume that |G|{2,3} = |L2(11)|{2,3} and V o(G) = V o(L2(11)). Then G =∼ L2(11). 

Proof. The proof of (1): We have that |L2(11)| = 22 ·3·5·11 and π∗(L2(11)) = V o(L2(11) = 

{2, 3, 5, 6, 11} (see Table 2 and Lemma 1.3). Clearly, GK(L2(11) has three connected 
components: {2, 3}, {5} and {11}. By the hypothesis we have that V o(G) = V o(L2(11)). 
Then by Theorem 3.1 we conclude that G has a normal series K < M ≤ G such that 
K is the maximal solvable normal subgroup of G, M/K is a simple group, and G/K ≤ 
Aut(M/K).  Moreover, π(G) = π(L2(11)) = {2, 3, 5, 11}, Γ(G) = Γ(L2(11)) = GK(L2(11) and 
n(GK(M/K)) ≥ 3.  It follows that π(M/K) ⊆ {2, 3, 5, 11}, and M/K is either a simple 
K3-group or a simple K4-group. 

(I) Assume M/K is a simple K3-group. 

Since π(M/K) ⊆ {2, 3, 5, 11} and n(GK(M/K)) ≥ 3, by Table 1 we have that M/K ∼= A5 

or A6. 

(Ia) Assume that M/K ∼= A5. 

Since G/K ≤ Aut(M/K), G/K =∼ A5 or S5.  If G/K ∼= S5, then 10 ∈ V o(G/K) (see 

the Atlas[9]), and so by Theorem 3.1(1) we have that 10 ∈ π∗(L2(11)) = {2, 3, 5, 6, 11}, a 

contradiction. So, we have that G/K =∼ A 5 ( ∼=  L2(4)). It follows that |G/K| = 22 · 3 · 5. 
Then, since π(G) = {2, 3, 5, 11} and |G|11 = |L2(11)|11 = 11 by the hypothesis, we have that 
π(K) ⊆ {2, 3, 11} and |K|11 = 11.  Let P be a Sylow 11-subgroup of K.  We have that 

|P | = 11. By Frattini argument we have that G = KNG(P ), and so G/K =∼ NG(P )/NK (P ). 

It follows that there exists a 3-element x ∈ G − K such that < x >≤ NG(P ).  Then, 
since |Aut(P )| = 10, we have that [< x >, P ] = 1, and so xP contains an element of order 
k · 33. By Lemma 1.3 and Lemma 1.8 we have that xP ⊆ xK ⊆ V an(G). It follows that 
k · 33 ∈ V o(G) = V o(L2(11)) = {2, 3, 4, 5, 6, 7, 8, 9, 12}, a contradiction. 

(Ib) Assume that M/K ∼= A 6 ( ∼= L2(9)). 
We have that |M/K| = |A6| = 23·32·5, G/K ≤ Aut(M/K) = Aut(A6). Then |G/K| = 23·32·5 

or 24 · 32 · 5(see the Atlas[9]), Hence, by using the argument used in (Ia) we will get a 
contradiction. 
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(II) Assume M/K is a simple K4-group. 

In this case, π(M/K) = {2, 3, 5, 11}. Since n(GK(M/K)) ≥ 3, by Table 2 we conclude 
that M/K =∼ M11 or L2(11).  Then by Theorem 3.1(2) and Table 2 we conclude that 
M/K =∼ L2(11).  Since G/K ≤ Aut(M/K) = Aut(L2(11), we have that G/K ∼= L2(11) or 

L2(11).2 (see the Atlas[9]).  If G/K =∼ L2(11).2, then 10 ∈ V o(G/K), and so by Theorem 

3.1(1) we have that 10 ∈ π∗(L2(11)) = {2, 3, 5, 6, 11}, a contradiction. Therefore, we have 

that G/K =∼ L2(11). For a group H, if πe(H) = πe(L2(11), then H ∼= L2(11) (see Table 1 in 

[24]). So, by Theorem 3.3 we conclude that K = 1 and G ∼= L2(11). This completes the 
proof of (1). 

The proof of (2) is left to the reader. The proof of the theorem is finished. 2 

By using the same argument as in the proof of Theorem 4.2 we conclude that the 
following theorem holds: 

Theorem 4.3. Assume that |G|{3,11} = |M11|{3,11} and V o(G) = V o(M11). Then G =∼ M11. 

By Theorem 3.2 and by using the argument used in the proof of Theorem 4.2, we 
conclude that the following theorem holds. 

Theorem 4.4. Let S be a simple group which is isomorphic to M12 or U5(2). Assume 

that |G|{3,11} = |S|{3,11} and V o(G) = V o(S). Then G ∼= S. 

By Table 1 in [22] and by checking in the Atlas [9], we obtain the following Table 3. 

Table 3 Simple groups G with π(G) = {2, 3, 5, 13}. 
 

G |G| V o(G) = π∗(G) 
e n(Γ(G) = n(GK(G)) 

L2(25) 23 · 3 · 52 · 13 {2, 3, 4, 5, 6, 12, 13} 3 
U3(4) 26 · 3 · 52 · 13 {2, 3, 4, 5, 10, 13, 15} 2 
L4(3) 27 · 36 · 5 · 13 {2, 3, 4, 5, 6, 8, 10, 12, 13, 20} 2 
S4(5) 26 · 32 · 54 · 13 {2, 3, 4, 5, 6, 10, 12, 13, 15, 20, 30} 2 

2F4(2)′ 211 · 33 · 52 · 13 {2, 3, 4, 5, 6, 8, 10, 12, 13, 16} 2 

 

Theorem 4.5. Assume that |G|13 = |L2(25)|13 and V o(G) = V o(L2(25)). Then G ∼= L2(25). 

Proof. |L2(25)| = 23 · 3 · 52 · 13 and π∗(L2(25)) = V o(L2(25)) = {2, 3, 4, 5, 6, 12, 13} (see Table 

3). Clearly, GK(L2(25))) has three connected components: {2, 3}, {5} and {13}. By the 
hypothesis we have that V o(G) = V o(L2(25)) = {2, 3, 4, 5, 6, 12, 13}. Then by Theorem 3.1 G 
has a normal series K < M ≤ G such that K is the maximal solvable normal subgroup of 
G, M/K is a simple group and G/K ≤ Aut(M/K). Moreover, π(G) = π(L2(25)) = {2, 3, 5, 13}, 
Γ(G) = Γ(L2(25)) = GK(L2(25) and n(GK(M/K)) ≥ 3. It follows that π(M/K) ⊆ {2, 3, 5, 31}. 

Then |π(M/K)| = 3 or 4. We discuss the two cases separately as follows. 
(I) Assume that |π(M/K)| = 3. 
In this case, M/K is a simple K3-group. Then, since π(M/K) ⊆ {2, 3, 5, 13} nd n(GK(M/K) ≥ 

3, by Table 1 we conclude that M/K ∼= A5 or A6. 

(Ia) Assume that M/K ∼= A 5 ( ∼= L2(4)). 
Since G/K ≤ Aut(M/K) = Aut(A5) = S5, we have that either G/K = M/K ∼= A5 or 

G/K ∼= S5. If G/K ∼= S5, then 10 ∈ V o(G/K)(see the Atlas[9]), and so by Lemma 1.8 we 

conclude that 10 is a factor of some element in V o(G) = {2, 3, 4, 5, 6, 12, 13}, a contradiction. 

Hence, we have that G/K =∼ A5. Then |G/K| = 22 · 3 · 5 and 13 ∈ π(K). Let R be a Sylow 
13-subgroup of K. By the hypothesis we have that |R| = |G|13 = |L2(25)|13 = 13. In view of 

Frattini argument, we have that G = KNG(R), and so G/K =∼ NG(R)/NK (R). Then there 
exists a 5-element x ∈ G − K such that x ∈ NG(R). We have that |Aut(R)| = 13 − 1 = 12. 
Then, since x is a 5-element, we have that [< x >, R] = 1, and so xR contains an element 

of order k · 65. Clearly, xK is an element of G/K ( ∼= A5) of order 5. By Lemma 1.3 and 
Lemma 1.8, we have that xK ⊆ V an(G). It follows that k · 65 ∈ V o(G) = {2, 3, 4, 5, 6, 12, 13}, 
a contradiction. 

(Ib) Assume that M/K ∼= A6. 

Note that A6 =∼ L2(9), |Out(A6)| = 4 and V o(A6) = π∗(A6) = {2, 3, 4, 5} (see Table 1). Since 

G/K ≤ Aut(M/K) = Aut(A6), by checking in Atlas[9] we conclude that |G/K| = 23 · 32 · 5 or 
24 · 32 · 5. Notice that every element of G/K of order 5 is vanishing in G/K(see the Atlas 
[9]). So, by using the same argument as in (Ia) we will get a contradiction. 
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(II) Assume that π(M/K) = {2, 3, 5, 13}. 

Noting that n(GK(M/K)) ≥ 3, by Table 3 we conclude that M/K ∼= L2(25). Then, since 

G/K ≤ Aut(M/K), by checking in the Atlas [9] we conclude that G/K = M/K ∼= L2(25). 

We know that, for a group H, if πe(H) = πe(L2(25)), then H ∼= L2(25) (see [24, Table 1]). 

Therefore, by Theorem 3.3 we conclude that K = 1 and G ∼= L2(25). This completes the 
proof of the theorem. 2 

By using Theorem 3.2 and by using the same argument as in the proof of Theorem 
4.5, we conclude that the following theorem holds. 

Theorem 4.6. Assume that |G|13 = |U3(4)|13 and V o(G) = V o(U3(4)). Then G ∼= U3(4). 

We have that |L2(19)| = 19(19 − 1)(19 + 1)/2 = 22 · 32 · 5 · 19 and π∗(L2(19)) = V o(L2(19)) = 
{2, 3, 5, 9, 10, 19} (see the Atlas[9]). Clearly, GK((L2(19)) has three connected components: 
{2, 5}, {3} and {19}.  In addition, if S is a simple group with π(S) = {2, 3, 5, 19} and 

|S|{5,19} = 5 · 19, then S =∼ L2(19) (see Table 1 in [22]). So, by using the same argument as 
in the proof of Theorem 4.5, we can prove that the following theorem holds. 

Theorem 4.7. Assume that |G|{5,19} = |L2(19)|{5,19} and V o(G) = V o(L2(19)). Then G ∼= 
L2(19). 

By checking in the Atlas[9], we get that |L3(8)| = 25·32·72·73 and π∗(L3(8)) = V o(L3(8)) = 

{2, 3, 7, 9, 14, 21, 63, 73}. Clearly, GK(L3(8)) has two connected components: π1 = {2, 3, 7} 
and π2 = {73}, and π1 is not a complete graph. In addition, if S is a simple group with 

π(S) = {2, 3, 7, 73}, then S ∼= L3(8) (see Table 1 in [22]). According to these information, 
by Theorem 3.2 we conclude that the following theorem holds. 

Theorem 4.8. Assume that |G|73 = |L3(8)|73 and V o(G) = V o(L3(8)). Then G ∼= L3(8). 

Theorem 4.9. Assume that |G|{17,19} = |J3|{17,19} and V o(G) = V o(J3). Then G =∼ J3. 

Proof.  |J3| = 27 · 35 · 5 · 17 · 19, and GK(J3) has three connected components: π1 = 

{2, 3, 5}, π2 = {17} and π3 = {19} (see the Atlas[9]). By the hypothesis we have that V o(G) = 
V o(J3). Hence, by Theorem 3.1 G has a normal series K < M ≤ G such that K is the 
maximal solvable normal subgroup of G, M/K is a simple group and G/K ≤ Aut(M/K). 
Moreover, π(G) = π(J3) = 2 · 3 · 5 · 17 · 19, Γ(G) = Γ(J3) = GK(J3) and n(GK(M/K)) ≥ 3. It 
follows that π(M/K) ⊆ {2, 3, 5, 17, 19}, and |π(M/K)| = 3, 4 or 5. 

(I) Assume that |π(M/K)| = 3. 
By Table 1 we conclude that M/K =∼ A5, A6 or L2(17). By using the same argument 

as in (I) of the proof of Theorem 4.5, we will get a contradiction. 
(II) Assume that π(M/K)| = 4. 
By Table 1 in [22] we have that M/K ∼= S4(4) or L2(19). 

Assume that M/K =∼ S4(4).  Then |M/K| = 28 · 32 · 52 · 17(see the Atlas[9]).  Since 

G/K ≤ Aut(M/K), we have that |G/K| = 2n · 32 · 52 · 17, where n = 8, 10 or 12(see the 
Atlas[9]). Then, since by the hypothesis |G|{17,19} = |J3|{17,19} = 17 · 19, we have that 
π(K) ⊆ {2, 3, 5, 19} and |K|19 = 19. Let P be a Sylow 19-subgroup of K. Then we have 

that |P | = 19. Let x ∈ M be of order 17. Since K ¢ G and (|K|, 17) = 1, we may assume 
that < x >≤ NG(P ), and so [< x >, P ] = 1. By Lemma 1.2,Lemma 1.3, Lemma 1.4 and 
Lemma 1.8, we have that xP ⊆ xK ⊆ V an(G). It follows that 17 and 19 are adjacent in 
Γ(G)(= GK(J3)), a contradiction. 

Assume M/K =∼ L2(19). Since G/K ≤ Aut(M/K) = Aut(L2(19)), we have that |G/K| = 

22 · 32 · 5 · 19 or 23 · 32 · 5 · 19 (see the Atlas[9]). Then, since |G|{17,19} = 17 · 19, we have 
that (|K|, 19) = 1 and |K|17 = 17. Thus, by using the same argument as in the above 
paragraph, we will get a contradiction. 

(III) Assume that |π(M/K|)| = 5. 

In this case, π(M/K|) = {2, 3, 5, 17, 19}. By Table 1 in [22] we get that M/K ∼= J3. Then, 

since G/K ≤ Aut(M/K), by checking in Atlas[9] we conclude that G/K ∼= M/K ∼= J3. We 

know that, for a group H, if πe(H) = πe(J3), then H ∼= J3 (see [23, Theorem 2.7]). 

Therefore, by Theorem 3.3 we conclude that K = 1 and G ∼= J3. This completes the 
proof of the theorem. 2 

Theorem 4.10 Assume that |G|19 = |J1|19 and V o(G) = V o(J1). Then G ∼= J1. 
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Proof. |J1| = 23 · 3 · 5 · 7 · 11 · 19 and V o(J1) = π∗(J1) = {2, 3, 5, 6, 7, 11, 15, 19} (see the 

Atlas[9]). Clearly, GK(J1) has four connected components:{2, 3, 5}, {7}, {11} and {19}. By 
the hypothesis we have V o(G) = V o(J1). Then by Theorem 3.1 we conclude that G has 
a normal series K < M ≤ G such that K is the maximal solvable normal subgroup of G, 
M/K is a simple group and G/K ≤ Aut(M/K). Moreover, π(G) = π(J1) = {2, 3, 5, 7, 11, 19}, 
Γ(G) = Γ(J1) = GK(J1) and n(GK(M/K)) ≥ 4. 

Clearly, we have that |π(M/K)| ≥ 4. Suppose that |π(M/K)| = 4. Then n(GK(M/K)) = 
4, and thus the order of every element of M/K is a prime power. It follows by [25, Table 

3] that M/K =∼ L3(4). We have that 9 ∈ V o(L3(4))(see the Atlas[9]). Hence, by Lemma 1.2, 
Lemma 1.4 and Theorem 3.1(1), we have that 9 ∈ π∗(J1) = {2, 3, 5, 6, 7, 11, 15, 19}, a con- 

tradiction. So, we have that |π(M/K)| ≥ 5. Then, noting that π(M/K) ⊆ {2, 3, 5, 7, 11, 19}, 
by [22, Table 1] we conclude that M/K is isomorphic to one of the following groups: 
M22, A11, McL, Hs, A12, U6(2), U3(19), L4(7), J1, L3(11) and HN . Then by [25, Table 3] we get 
that M/K ∼= M22 or J1. 

Assume that M/K =∼ M22. Since G/K ≤ Aut(M/K) = Aut(M22), we have that G/K ∼= M22 

or M22.2 (see the Atlas[9]). If G/K =∼ M22.2, then 14 ∈ V o(G/K) (see the Atlas[9]), and 
so by Theorem 3.1(1) we have that 14 ∈ π∗(J1) = {2, 3, 5, 6, 7, 11, 15, 19}, a contradiction. 
Hence, we have that G/K =∼ M22. It follows that |G/K| = 27 · 32 · 5 · 7 · 11 (see the Atlas[9]). 

Then by the hypothesis we have that |K|19 = |G|19 = |J1|19 = 19. So, by using the same 
argument as in (II) of the proof of Theorem 4.9 we will get a contradiction. 

Assume that M/K =∼ J1. Since G/K ≤ Aut(M/K) = Aut(J1) and |Out(J1)| = 1 (see the 

Atlas[9]), we have that G/K =∼ J1. We know that, for a group H, if πe(H) = πe(J1), then 

H ∼= J1 (see [23, Theorem 2.7]). Therefore, by Theorem 3.3 we have that K = 1 and 

G ∼= J1. This completes the proof of the theorem. 

Theorem 4.11. Assume that |G|{3,7,11} = |U6(2)|{3,7,11} and V o(G) = V o(U6(2)). Then G ∼= 
U6(2). 

Proof. Note that U6(2) =2 A5(2). We have that |U6(2)| = 215 · 36 · 5 · 7 · 11 and GK(U6(2)) 
has three connected components: {2, 3, 5}, {7} and {11}(see the Atlas[9]). Then, since 
V o(G) = V o(U6(2)) by the hypothesis, by Theorem 3.1 we conclude that G has a normal 
series K < M ≤ G such that K is the maximal solvable normal subgroup of G, M/K 
is a simple group and G/K ≤ Aut(M/K). Moreover, π(G) = π(U6(2)) = {2, 3, 5, 7, 11}, 
Γ(G) = Γ(U6(2)) = GK(U6(2) and n(GK(M/K)) ≥ 3. It follows that π(M/K) ⊆ {2, 3, 5, 7, 11}, 

and |π(M/K)| = 3, 4 or 5. 
(I) Assume that |π(M/K)| = 3. 
Noting that n(GK(M/K)) ≥ 3, by Table 1 M/K is isomorphic to the following groups:A5, 

L2(7), L2(8) and A6. By the hypothesis we have that |G|{3,11} = |U6(2)|{3,11} = 36 · 11. So, by 
using the same argument as in (I) of the proof of Theorem 4.2 we will get a contradiction. 

(II) Assume that |π(M/K)| = 4. 
Noting that π(M/K) ⊆ {2, 3, 5, 7, 11}, by [22, Table 1] we have that either π(M/K) = 

{2, 3, 5, 7} or {2, 3, 5, 11}. 
Assume that π(M/K) = {2, 3, 5, 7}. Noting that n(GK(S4(7)) = 2 (see [25, Table 1]) and 

n(GK(M/K)) ≥ 3, by [22, Table 1] we conclude that M/K is isomorphic to one of the 
following groups: A7.L2(49), U3(5), L3(4)A8, A9, J2, A10, U4(3), S6(2) and O+(2). Then, since 
G/K ≤ Aut(M/K). by checking in the Atlas[9] we conclude that |K|11 = 11. So, by using 
the same argument as in (I) of the proof of Theorem 4.2, we will get a contradiction. 

Assume that π(M/K) = {2, 3, 5, 11}. Then, by [22, Table 1] we conclude that M/K is 
isomorphic to one of the following groups:L2(11), M11, M12 and U5(2). Hence, noting that 
n(GK(M/K)) ≥ 3, by [25, Table 2 and Table 3] we conclude that M/K ∼= L2(11) or M11. 

Assume that M/K =∼ L2(11). Since G/K ≤ Aut(M/K) = Aut(L211) and |Out(L(11)| = 2 
(see the Atlas[9]), We have that |G/K| = 22 · 3 · 5 · 11 or 23 · 3 · 5 · 11 (see the Atlas[9]),π(K) ⊆ 
{2, 3, 5, 7} and |K|7 = 7. So, by using the same argument as in (I) of the proof of Theorem 

4.2 we will get a contradiction. 
Assume that M/K =∼ M(11).  Since G/K ≤ Aut(M/K) = Aut(M11) and |Out(M11)| = 1 

(see the Atlas[9]), we have that G/K = M/K =∼ M11. It follows that |G/K| = 24 · 32 · 5 · 11, 

π(K) ⊆ {2, 3, 5, 7} and |K|7 = 7. So, by using the same argument as in (I) of the proof of 
Theorem 4.2 we will get a contradiction. 

(III) Assume that |π(M/K)| = 5. 
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In this case, π(M/K) = {2, 3, 5, 7, 11}. Noting that n(GK(M/K)) ≥ 3, by [25, Table 2 

and Table 3] we conclude that M/K ∼= M22 or U5(2). 
Assume that M/K =∼ M22. Since G/K ≤ Aut(M/K) = Aut(M22) and 7 is an isolated 

vertex of Γ(G)(= Γ(U6(2) = GK(U6(2))), by checking in the Atlas[9] we conclude that 

G/K = M/K =∼ M22. It follows that |G/K| = 27 · 32 · 5 · 7 · 11, π(K) ≤ {2, 3, 5} and |K|3 = 34. 
Let P be a Sylow 3-subgroup of K.  Then |Aut(Ω(Z(P )))||(34 − 1)(33 − 1)(32 − 1)(3 − 1). 
So, by using the same argument as in (I) of the proof of Theorem 4.x we will get a 
contradiction. 

Assume that M/K =∼ U6(2). Since G/K ≤ Aut(M/K) = Aut(U6(2)) and 7 and 11 are 

isolated vertex of Γ(G)(= GK(U6(2)), by checking in the Atlas[9]) we conclude that G/K ∼= 
M/K =∼ U6(2). We know that, for a group H, if πe(H) = πe(U6(2), then H ∼= U6(2)(see [24, 

Table 1]), and so by Theorem 3.3 we conclude that K = 1 and G ∼= U6(2). This completes 
the proof of the theorem. 2 

Theorem 4.12. Let S = O−(2) or S8(2). Assume that |G| = |S| and V o(G) = V o(S). Then 

G ∼= S. 

Proof. We only investigate the case S = O−(2); For the case S = S8(2), the proof is 
similar. 

We have that |O−(2)| = 212·34·5·7·17, V o(O−(2)) = π∗(O−(2)) = {2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 17, 
8 8 e 8 

21, 30} (see the Atlas[9]).  Clearly, GK(O−(2)) has two connected components:  π1 = 

{2, 3, 5, 7} and π2 = {17}, and π1 is not a complete graph. By the hypothesis we have 
that V o(G) = V o(O−(2)). Then by Theorem 3.2 we conclude that G has a normal series 
K < M ≤ G such that K is the maximal solvable normal subgroup of G, M/K is a simple 
group and G/K ≤ Aut(M/K). 

By the hypothesis we have that |G| = |O−(2)| = 212 · 34 · 5 · 7 · 17.  It follows that 
π(M/K) ⊆ {2, 3, 5, 7, 17} and |π(M/K)| = 3, 4 or 5. 

(I) Assume that |π(M/K)| = 3. 
By Table 1 we conclude that M/K is isomorphic to one of the following groups: 

A5, L2(7), L2(8), L2(17), U3(3), U4(2) and A6. Then by using the same argument as in (I) of 
the proof of Theorem 4.2 we will get a contradiction. 

(II) Assume that |π(M/K)| = 4. 
by [22, Table 1] M/K is isomorphic to one of the following groups: A7, L3(4), A8, A9, U4(3), 

S6(2) and L2(16). Then by using the same argument as in (II) of the proof of Theorem 
4.9 we will get a contradiction. 

(III) Assume that |π(M/K)| = 5. 
In this case π(M/K) = {2, 3, 5, 7, 17}. Noting that |G| = 212 · 34 · 5 · 7 · 17, by [22, Table 

1] M/K =∼ O−(2). Then, since |G| = |O−(2)|, we get that G ∼= O−(2). This completes the 
8 8 8 

proof of the theorem. 2 

We have that |L5(2)| = 210 · 32 · 5 · 7 · 31, and V o(L5(2)) = π∗(L5(2)) = {2, 3, 4, 5, 6, 7, 8, 12, 14, 
15, 21, 31} (see the Atlas[9]).  Clearly, GK(L5(2)) has two connected composition: π1 = 

{2, 3, 5, 7} and π2 = {31}, and π1 is not a complete graph. So, by using the same argument 
as in the proof of Theorem 4.12, we conclude that the following theorem holds: 

Theorem 4.13. Assume that |G|{5,7,31} = |L5(2)|{5,7,31} and V o(G) = V o(L5(2)). Then G ∼= 
L5(2). 

 

5 Some results on Problem B 

In this section, we establish several results on Problem B, that is, on V-recognition 
of a simple group. We already know that the simple groups L2(2a) and Sz(22n+1) are 
V-recognizable (see Section 1). 

Theorem 5.1. Assume that V o(G) = V o(L2(23)). Then G ∼= L2(23), that is, L2(23) is V- 
recognizable. 

Proof. We have that |L2(23)| = 23·3·11·23 and π∗(L2(23)) = V o(L2(23)) = {2, 3, 4, 6, 11, 12, 23} 
(see the Atlas[9]). Clearly, n(GK(L2(23))) = 3. Then, since V o(G) = V o(L2(23)) by the hy- 
pothesis, by Theorem 3.1 G has a normal series K < M ≤ G such that K is the maximal 
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solvable normal subgroup of G, M/K is a simple group and G/K ≤ Aut(M/K). Moreover, 
π(G) = π(L2(23)) = {2, 3, 11, 23}, Γ(G) = Γ(L2(23)) = GK(L2(23)) and n(GK(M/K)) ≥ 3. It 

follows that π(M/K) ⊆ {2, 3, 11, 23}. Clearly, either |π(M/K)| = 3 or π(M/K) = {2, 3, 11, 23}. 
By Table 1 we conclude that |π(M/K)| /= 3, and so π(M/K) = {2, 3, 11, 23}. It follows 

by Table 1 in [22] that M/K =∼ L2(23). Then, since G/K ≤ Aut(M/K) = Aut(L2(23)), by 
checking in the Atlas[9] we conclude that G/K = M/K ∼= L2(23). We know that, for a 
group H, if πe(H) = πe(L2(23)), then H ∼= L2(23)(see [23, Theorem 2.7]). So, by Theorem 

3.3 we conclude that K = 1 and G =∼ L2(23). The proof is finished. 2. 

By Table 1 in [22] and by checking in the Atlas [9], we obtain the following Table 4. 

Table 4 Simple groups G with π(G) = {2, 3, 7, 13}. 
 

G |G| V o(G) = π∗(G) 
e V (Γ(G)) n(Γ(G)) 

L2(27) 22 · 33 · 7 · 13 {2, 3, 7, 13, 14} {2, 3, 7, 13} 3 
G2(3) 26 · 36 · 7 · 13 {2, 3, 4, 6, 7, 8, 9, 12, 13} {2, 3, 7, 13} 3 

3D4(2) 212 · 34 · 72 · 13 {2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 18, 21, 28} {2, 3, 7, 13} 2 
L2(13) 22 · 3 · 7 · 13 {2, 3, 6, 7, 13} {2, 3, 7, 13} 3 

Theorem 5.2. Assume that V o(G) = V o(L2(27)). Then G ∼= L2(27), that is, L2(27) is V- 
recognizable. 

Proof. By Table 4, we have that π∗(L2(27)) = V o(L2(27)) = {2, 3, 7, 13, 14}. Clearly, 
GK(L2(27)) has three connected components: {2, 7}, {3} and {13}. By the hypothesis 
we have that V o(G) = V o(L2(27)). It follows by Theorem 3.1 that G has a normal 
series K < M ≤ G such that K is the maximal solvable normal subgroup of G, M/K 
is a simple group, G/K ≤ Aut(M/K). Moreover, π(G) = π(L2(27)) = {2, 3, 7, 13}, Γ(G) = 
Γ(L2(27) and n(GK(M/K)) ≥ 3. In addition, if M/K is a simple group of Lie type, then 
πe(M/K) ⊆ πe(L2(27)) = {1, 2, 3, 7, 13, 14}. Then, by Table 1 and Table 4 we conclude that 
M/K =∼ L2(27). Then, since G/K ≤ Aut(M/K) = Aut(L2(27)) and each element in V o(G/K) 

is a factor of some element in V o(G) = V o(L2(27)) = {2, 3, 7, 13, 14}(see Lemma 1.8), by 

checking in the Atlas [9] we conclude that G/K = M/K ∼= L2(27). We know that, for a 

group H, if πe(H) = πeL2(27), then H ∼= L2(27)(see [23, Theorem 2.7]). So, by Theorem 
3.3 we conclude that K = 1 and G =∼ L2(27). This completes the proof of the theorem. 2 

By using the same argument as in the proof of Theorem 5.2, we conclude that the 
following theorem holds: 

Theorem 5.3 Assume that V o(G) = V o(L2(13)).  Then G ∼= L2(13), that is, L2(13) is V- 
recognizable. 

Theorem 5.4 Assume that V o(G) = V o(J4). Then G ∼= J4, that is, J4 is V-recognizable. 

Proof. Let S be a simple group. Then n(GK(S)) ≤ 6 (see[8]). We have that 
n(GK(J4)) = 6 (see [25, Table 3]).  Then, since V o(G) = V o(J4) by the hypothesis, 
by Theorem 3.1 G has a normal series K < M ≤ G such that K is the maximal 
solvable normal subgroup of G, M/K is a simple and G/K ≤ Aut(M/K). Moreover, 
π(G) = π(J4),Γ(G) = Γ(J4)) = GK(J4)) and n(GK(M/K)) = 6.  Then, since n(GK(M/K)) = 6, 
we have that M/K =∼ J4 (see [25, Table 3]). Hence, since G/K ≤ Aut(M/K) = Aut(J4) and 

|Out(J4)| = 1 (see the Atlas[9]), we get that G/K ∼= J4. We know that, for a group H, 

if πe(H) = πe(J4), then H =∼ J4 (see [23,Theorem 2.7]).So, by Theorem 3.3 we have that 

K = 1 and G ∼= J4. The proof is finished. 2. 
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