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Abstract

Let G be a finite group, and let g € G. We say that the element g is a vanishing element in G if
there exists an irreducible character y of G such that x(g) = 0. In this paper, we establish a number
of results on the vanishing elements of a finite group.
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1 Introduction and Preliminary

Throughout this paper, the term group always means a group of finite order, and by simple groups
we mean nonabelian simple groups. The letter G always denotes a group, and r1(G) denotes the set
of all prime divisors of the order |G| of a group G. For an element x € G, o(x) denotes the order of
x. In addition, we use also the following notation:

1te(G) = {o(x)| x € G}, and 71*(G) = 1te(G) — {1}.

Van(G) = {x € G| there exists x € Irr(G) such that x(x) = O}.

Vo(G) = {o(x)| x € Van(G)}.

I(G): The vanishing prime graph of G(see [2]).

V ([(G)): The set of vertices of I(G).

n(r(G)): The number of connected components of I'(G)).

GK(G): The prime graph of G(the Gruenberg-Kegel graph of G) (see [3]).
n(GK(G)): The number of connected components of GK(G).

If GK(G) is disconnected, we denote by 1(G) the i'th connected component of GK(G), where
i=1,2,--+,n(GK(G)), and we suppose that 2 € 1;(G) if 2 is a vertex of GK(G).

Let N be a set of positive integers. We put N|o ={x| x € N and xis odd } and N |, = {x|] x €
N, x> 1and x is a power of 2}. Assume that 2 € N. Then we say that the period of 2 in N is m if
2m = Max(N |2).

All further unexplained notation is standard and is referred to [1], for example.

Let g € G. We say that the element g is a vanishing element of G if there exists an irreducible
character x of G such that x(g) = 0. Clearly, V an(G) is the set of vanishing elements of G. By a
classical theorem of W.Burnside, if G is a nonabelian group, then V an(G) is not empty (see [1, 6.13,
p.76]). Hence, if G is a nonabelian group, then the set V o(G) of orders of vanishing elements of G is
not empty. The set V o(G) encodes non-trivial information about the structure of G. Therefore, in
[4], the following conjecture was put forward.

Conjecture A: Let S be a simple group. If |G| =|S| and V o(G) = Vo(S), then G = S.

Clearly, confirming this conjecture is an interesting topic.

We define the V-recognition of a group G as follows. For an arbitrary subset v of the set of
positive integers = 2, we denote by h(v) the number of pairwise non-isomorphic groups G such that
V o(G) = v. Given a group G, G is said to be V-recognizable if h(V o(G)) =1, almost V-recognizable
if 1 < h(V o(G)) < =, and non-V-recognizable if h(V o(G)) = oo.

Clearly, the following Problem B is also interesting.



Problem B: Which simple groups are V-recognizable?

In this paper, we establish a number of results related to vanishing elements or Conjecture A, and
we establish several results on Problem B

In order to complete the proofs of results of the present paper, we first list several lemmas which
will be used in the sequel.

Lemma 1.1[5, Corollary A]. Assume that the order of every vanishing element of G can not be
divided by a prime p. Then G has a normal Sylow p-subgroup.

Let p be a prime divisor of |G|, and let x € Irr(G). We say that x is of p-defect zero if p does not
divide |G|/x(1). If x € Irr(G) is of p-defect zero, then, for every element g € G such that p divides
o(g), we have x(g) = 0 (see [6, (8.17), p.133]).

Lemma 1.2[7, Corollary 2]. Let S be a simple group and assume that there exists a prime
g such that S does not have an irreducible character of g-defect zero. Then q=2or3 and S is
isomorphic to one of the following groups: M1, M2, Maa, J2, HS, Suz, Ru, Co,, Coz, BM and A,
withn= 7.

From Lemma 1.2 we get the following:

Lemma 1.3. Let S be a simple group, and assume that S is not isomorphic any one of
the following groups: Mhia, M2, Mas, J2, HS, Suz, Ru, Coi, Cos, BM and A, with n = 7. Then
Van(S) = S — {1} and V o(S) = gt(S).

Lemma 1.4[8, LEMMA 2.7]. Let N be a normal subgroup of G, and let p be a prime divisor
of IN|. If N has an irreducible character of p-defect zero, then every element of N of order divisible
by p is a vanishing element of G.

Lemma 1.5[8, THEOREM B]. Let G be a nonsolvable group. If T(G) is disconnected, then G
has a unique nonabelian compose factor S. Moreover n(I(G)) < n(GK(S)) unless G is isomorphic
to A7.

Lemma 1.6[8, Proposition 2.10]. Let S be a sporadic simple group, or an alternating group on
n letters with n = 8. Then S has an irreducible character ¢ which extends to Aut(S) and an element
g of order 6 such that ¢(g) = 0.

Lemma 1.7[2]. Let G be a solvable group. Then n(I'(G)) < 2. Further, if n(F'(G)) = 2, then
two connected components of I'(G) are complete graphs.

Let N be a normal subgroup of G. Itis well known that we can identity the irreducible
characters of G/N with the irreducible characters of G that contains N in the kernel.
So, it is obvious that the following Lemma 1.8 holds.

Lemma 1.8[2, Remark 2.2]. Let N be a normal subgroup of a group G. The following state-
ments are true:

(i) If xN € Van(G/N), then xN < V an(G).

(ii) Each element in Vo(G/N) is a factor of some element in V o(G).

Lemma 1.9(see [8, Proposition 4.2]). Assume that V (I(G)) /= n(G). Then I'(G) is connected.

Lemma 1.10[8, Proposition 6.4]. Let S be a simple group. Then [(S) = GK(S), unless
S = A,

2 Aresult on vanishing prime graphs and its consequences

By the definition of the vanishing prime graph '(G), we have
V (I'(G)) = {p| p is a prime and there exists an element m € V o(G) such that p|m}.

For two distinct vertices p,g € V (I'(G)), p and g are adjacent in I(G) if and only if there
exists an element m € V o(G) such that pg|m.



In this section, we first establish a theorem on a group G for which the vertex 2
of the vanishing prime graph (G) is an isolated vertex, and then we establish several
consequences of this theorem, namely, Theorem 2.5 in the present section.

Suppose that |V ([(G))| = 2 and 2 € V ([(G)). Clearly, 2 is an isolated vertex of (G) if
and only if each element of Vo(G) is either an odd number or a power of 2.

Proposition 2.1. Let G be a nonsolvable group. Then |V (I(G))| = 3 and 2 € V (I'(G)).

Proof. Suppose on the contrary that 2 /€ V ([(G)), that is, the order of every vanishing
element of G is not divisible by 2. Then by Lemma 1.1 G has a normal Sylow 2-subgroup,
and thus by the Schur-Zassenhaus theorem and the odd order theorem we conclude that
G is solvable, contradicting the hypothesis. So, 2 € V (I(G)). If |V (I(G))| < 2, then by
Lemma 1.1 and the Burnside {p, g}-theorem we conclude that G is solvable, contradicting
the hypothesis. So, we have |V (I(G))| = 3. This completes the proof. 2

The following Proposition 2.2 is obvious.

Proposition 2.2. Let H be a group. Assume that H has a normal 2-subgroup P, and the order
of each element of H is either an odd number or a power of 2. Then the order of each element of
H/P is either an odd number or a power of 2 and m.(H)|o = rte(H/P)|o-

Proposition 2.3. Let G be a nonsolvable group, and suppose that the order of each element of G
is either an odd number or a power of 2. Then G/0,(G) is isomorphic to one of the following groups:
L>(q), g = 2k with k = 2 or q is a Fermat prime or Mersenne prime, or g = 9; Sz(2"*1), n = 1; L3(4);
Ag.23 (using the notation in the Atlas[9]).

Proof. Since the order of each non-identity element of G is either an odd number
or a power of 2, Cs(t) is a 2-group for every involution t of G. Then, noting that G is
nonsolvable, by [10, IlIl, Theorem 5] we conclude that G/O,(G) is isomorphic to one of
the following groups: L>(qg), g = 2k with k= 2 or g is a Fermat prime or Mersenne prime,
or g =9; Sz(2"1), n = 1; L3(4); As.23. This completes the proof. 2

Theorem 2.4. Let G be a nonsolvable group, and let K be the maximal solvable normal subgroup
of G. Assume that I'(G) is disconnected. Then G has a normal series K < M < G such that M/K
is a simple group, G/K < Aut(M/K) and G/M < Out(M/K). Furthermore, one of the following
statements holds:

(1) M/K = A, with n=5. Ifn /=6, then G/K = A, or S,. If n =6, then G/K is isomorphic
one of the following groups: As, Se, PGL(2, 6) and A¢.23. Furthermore, if n = 8, then 6 € V o(G/K).

(2) M/K is a simple group of Lie type, and g*(M/K) =V o(M/K) S V o(G/K).

(3) M/K is a sporadic simple group, and 6 € V o(G/K).

Proof. Since G is nonsolvable and I(G) is disconnected by the hypothesis, by Lemma
1.5 G has a normal series

1= K<M=sG

such that M/K is a simple group, G/K < Aut(M/K) and G/M < Out(M/K).

Since M/K is a simple group, by the classification of finite simple groups we conclude
that M/K is isomorphic to either an alternating group A, with n =5, or a simple group
of Lie type, or a sporadic simple group.

(i) Assume that M/K = A, with n = 5.

If n /=6, then Aut(A,) = S,. Then, since M/K < G/K < Aut(M/K) and |S, : A,| = 2,
we have that G/K = A, or S,. If n =6, by checking in the Atlas [9] we conclude that
G/K is isomorphic one of the following groups: Ag, Se, PGL(2, 6) and Ag.2s.

If n =8, by Lemma 1.6 we conclude that 6 € Vo(G/K). So, (1) holds.

(ii) Assume that M/K is a simple group of Lie type.

By Lemma 1.2, Lemma 1.3 and Lemma 1.4, we have that p*(M/K) = Vo(M/K) <
V o(G/K). So, (2) holds.

(iii) Assume that M/K is a sporadic simple group.

Since G/K < Aut(M/K), by Lemma 1.6 we conclude that 6 € V o(G/K). So, (3) holds,
and the proof of the theorem is completed. 2



In the proof of the following Theorem 2.5, we shall use the following fact: Let G be
a simple group of Lie type over the field GF(2"). Then Out(G) is a cyclic group of order
n.

Theorem 2.5. Let G be a nonsolvable group, and let K be the maximal solvable normal subgroup
of G. Assume that 2 is an isolated vertex of I(G). Then G has a normal series K <M < G such that
M/K is a simple group, G/K < Aut(M/K) and G/M < Out(M/K). Furthermore, the following
propositions (1), (2), (3) and (4) hold:

(1) M/K is isomorphic to one of the following groups: A7; L2(q), g =2" withn=2orqisa
Fermat prime or Mersenne prime, or g = 9; Sz(22"*1), n = 1; L3(4).

(2) Assume that K > 1, and that every non-identity element of G/K is vanishing in G/K. Let
V be a normal subgroup of G such that V < K and K/V is a chief factor of G. Set G= G/V. Then
the following statements hold:

(2a) Each element of n*§ 5) is either an odd number or a power of 2.

(2b) K (= K/V) is an elementary abelian 2-group.

(2c) Let p € ni(K) such that K /= OP(K). Then p = 2. In particular, if K is nilpotent, then
K = 02(G).

(2d) If each element in n*gé) is a prime power, then 5//2 is isomorphic to one of the following
groups: As, L»(8), 5z(23) and Sz(25).

(2e) me(G)|o = 1e(G/K) | o B

(2f) Max(ne(G)|2) < Max(V o(G)|2) and Max(re(G)|2) = Max(rte(G/K)|2).

(3) The following statements hold:

(3a) Assume that M/K = L,(2") with n = 2. Then G/K = M/K. Furthermore, if the period of
2in Vo(G)is 1, then K=1 and G = L,(2").

(3b) Assume that M/K = Sz(227+1) with n = 1. Then G/K = M/K. Furthermore, if the period
of2inVo(G)is 2, then K=1and G = Sz(22+1),

(3c) Assume that M/K = A;. Then G/K = A,.

(3d) Assume that M/K = Ly(7). Then G = Ly(7).

(3e) Assume that M/K = L»(17). Then G = L,(17).

(3f) Assume that M/K = L3(4). Then G = Ls(4).

(3g) Assume that M/K = L3(9). Then G = L3(9) or G = Ae.2s.

(4) If the period of 2 in Vo(G) is 1, then G = L(2") with n = 2.

Proof. Write G = G/K. Since 2 is an isolated vertex of I(G) by the hypothesis, each
element in V o(G) is either an odd number or a power of 2, that is, the order of every
vanishing element of G is either an odd number or a power of 2. Hence, by Lemma 1.8
we conclude that each element in V o(G) is either an odd number or a power of 2.

Since G is nonsolvable, by Proposition 2.1 we have that |V ([(G))| = 3. Then, since
2 is an isolated vertex of (G), I(G) is disconnected. It follows by Theorem 2.4 that G
has a normal series K < M < G such that M (= M/K) is a simple group, G < Aut(M) and
G/M < Out(M/K). .

Notice that As = [,(22) and As = L»(32). Then, since each element in V o(G) is either_
an odd number or a power of 2, by Theorem 2.4 we conclude that either M = A5, or M
is isomorphic to a simple group of Lie type and the order of every non-identity element
of M is either an odd number or a power of 2. Hence, by Proposition 2.3 we conclude
that either M = A,, or M is isomorphic to one of the following groups: L,(g), g = 2" with
n =2 or q is a Fermat prime or Mersenne prime, or g = 9; Sz(2"*1), n = 1; L3(4). So, (1)
holds.

Next, we prove (2). By the assumption of (2), we have G = G/V . Clearly, I?(= K/V)

is an elementary abelian p-group, where p is a prime. We have that GT/IZ =G/V/K/V =
G/K. Then, by the assumption of (2) we conclude that every non-identity element of

GT/IZ is vanishing in 5//2 . Hence, by Lemma 1.8 we have that
(*) G-=K < Van(G), and n*(G) S Vo(G) U {p}.

In addition, by Lemma 1.8 every element of Vo(g) is either an odd number or a power

of 2. It follows that every element in 1*(G) is either an odd number or a power of 2. So,
(2a) holds.



Since every element in n*e(é) is either an odd number or a power of 2. by Proposition

2.3 G has a normal 2-subgroup U such that 5/(7 is isomorphic to one of the following
groups: Li(g), g = 2" with n =2 or g is a Fermat prime or Mersenne prime, or g = 9;
Sz(27+1), n = 1; L3(4); As.23. Then we conclude that U=K. Hence, p = 2 and IZ(= K/V)
is an elementary abelian 2-group. So, (2b) hold. By (2b) we conclude that (2c) holds.

Assume that each element in ne(g) is a prime power, then by [11, Theorem 1.7] we
have that G/OZ(G) is isomorphic to one of the following groups: As, L»(8), Sz(23) and
Sz(2°). By (2b) it is obvious that K= OZ(G) So, (2d) holds.

Since K is a normal 2-subgroup of G and every element of ne(G) is either an odd
number or a power of 2 (see (2a) and (2b)), by Proposition 2.2 we have rre(G)lo =
ne(G/K)|o = 1te(G/K)|o- So, (2€) holds.

LetX €G bea non-identity element such that o(x) is a power of 2. By Lemma 1.8
every element of Vo(g) is a factor of some element of V o(G). Then, noting that p= 2, by
(*) we conclude that o(x) is a factor of some element of V 0(G), and thus Max(nE(G)lz)
Max(V o(G)|2). Since G /K G/K, it is obvious that Max(ne(G)|2) Max(rte(G/K)|2)-
So,(2f) holds. This completes the proof of (2).

Below, we prove (3). Set G = G/K.

(i) Assume that M = M/K = L,(2¥), where k = 2.

Oout(M)(= Out(L2(2%))) is a cyclic group of order k. Then, since G/M = G/M < Out(M),
G/M is a cyclic group of order m, where m|k.

We will show that |G : M | is a power of 2(including the case when G = M ). Suppose
on the contrary that |G : M | is not a power of 2. Then there exists a normal subgroup
R of G such that M <R < G and |R/M| = r( if k = 2n + 1, take R = G), where r is an
odd number. M has an unique irreducible character(Steinberg character) x such that
x(1) = |M |2 (see [12, Theorem 38.1,p.228]). Clearly, x is invariant in G. It follows by [6,
(11.22), p.186] that y extends to R. So, there exists ¢ € Irr(R) such that ¢ is of 2-defect
zero, and thus by [6, (8.17), p.133] we conclude that every element of order 2s in R is a
vanishing element of R, where s is an odd prime. Then by Lemma 1.4 we conclude that
every element of order 2s in R is a vanishing element of G. Then, since each element in
V o(G) is either an odd number or a power of 2, R does not have any element of order 2s,
where s is an odd prime. Then by Proposition 2.3 R has a normal 2- -subgroup U such
that R/U is a simple group, and thus r = 2, a contradiction. Hence, |G M | is a power of
2, that is, |G/K : M/K]| is a power of 2. Let r be any odd prime divisor of |G|. Thenris a
prime divisor of |V | because |G : M| is a power of 2. By Lemma 1.2 M has an irreducible

character 9 of r-defect zero. Let ¢ be an irreducible constituent of 9¢. Then ¢ € Irr(G)
is of r-defect zero, and thus {/(g) = O for any element of order 2r in G. Then, since each
element in Vo(G) is either an odd number or a power of 2, G does not have elements
of order 2r, where r is any odd prime divisor of |G|. Then, noting that M = [,(2k),
by Proposition 2.3 we conclude that G/0O,(G) is a simple group. Hence, since K is the
maximal solvable normal subgroup of G, we have that O,(G) = 0,(G/K)=1and G=M,
that is, G/K = M/K. So, the first conclusion of (3a) holds.

Now, we assume that the period of 2 in V o(G) is 1, that is, Max(V o(G)|2) = 2. We
will show that K = 1. Suppose on contrary that K > 1, and let V be a normal subgroup
of G such that V < K and K/V is a chief factor of G. Set G = G/V. We have that
L>(2K) = M/K = G/K. It follows by [13, 8.27, p.213] that

e(G/K) = {1, 2,all factors of 2k — 1 and 2k + 1}.

By Lemma 1.3, every non-identity element of G/K is vanishing in G/K. Hence, by (2)
we get that
te(G/V) = ne(g) ={1, 2, all factors of 2k — 1 and 2k + 1} = rt.(L2(2%)).

Then by [14] we have that G/V = L[,(2%). On the other hand, we have that G/K = L[,(2k).
It follows that |G/K| = |G/V | and K = V, a contradiction. Hence, we have that K =1

and G = L[,(2%). So, the second conclusion of (3a) holds. This completes the proof of
(3a).

(ii) Assume that M/K = M = 5z(22m1),



Out(M/K)(= Out(5z(27+1)) is a cyclic group of order 2n + 1. It follows that G/M ( =
G/M < Out(M/K) = Out(M)) is a cyclic group of odd order. M has a unique irreducible
character y such that x(1) = |M |, (see [15, Chap. XI, Theorem 5.10, p.216]). Then by
using the same argument as in the third paragraph of (i)(G replaces R), we conclude
that G/K = G = M = M/K. So, the first conclusion of (3b) is true.

Now, we assume that the period of 2 in V a(G) is 2, that is, Max(V o(G)|2) = 4. We have
that 71.(G) = (M) = me(52(227+1)) = {1, 2, 4, all factors of (227+1 — 1), (227*1 — 2n+1 + 1) and
(22n+1 4 2r+1 4+ 1)} (see [16]). By using the same argument as in the final paragraph of (i)
and by [16], we conclude that K =1 and G = M = $z(22"*). So, the second conclusion of
(3b) is true. Then (3b) holds.

(iii) Assume that M/K = M = As.

By Theorem 2.4 either G/K = A; or G/K = S;. Since each element V o(G/K) is either
an odd number or a power of 2, by checking in the Atlas [9] we conclude that G/K = A,
thatis, (3c) holds.

(iv) Assume that M = M/K = L,(7).

We have that G < Aut(M ) = Aut(L2(7)). Since the order of every element in V o(G) is
either an odd number or a power of 2, by checking in the Atlas [9] we conclude that
G/K = G = M = [,(7). Note that Vo(G/K) = Vo(Lx(7)) = m*(L2(7) = {2, 4, 3,7} (see [6,
p.289]).

We will show that K = 1. Suppose on the contrary that K > 1. Let V be a normal
subgroup of G such that V < K and K/V is a chief factor of G. Set G = G/V. Since
G/K = Ly(7), by Lemma 1.3 every non-identity element of G/K is vanishing in G/K, and
so we can apply (2). By (2) we have that each element in rre(g) is either an odd number
or a power of 2, and 1.(G)|o = e(G/K)|o = me(L2(7))|o = {3, 7}. Hence, each element in
ne(é) is a prime power. Then by (2) we conclude that 5//2 E Lx(7)(see (2d)). Then,
since 5//2 = G/K, G/K¥E Ly(7),a contradiction. So, we have that K =1 and G = L,(7),

that is, (3d) holds.
(v) By using the same argument as in (iv) we conclude that (3e) and (3f) hold.

(vi) Assume that M = M/K = L,(9).

By Theorem 2.4 we have that G/K is isomorphic to one of the following groups:
Ae, Se, PGL(2, 9) and Ag.23. Since each element in V o(G/K) is either an odd number or
a power of 2, by checking in the Atlas[9] it is easy to see that either G/K = As or
G/K = Ag.23.

Assume that G/K = A (= L2(9)). By using the same argument in the final paragraph
of (iv), we conclude that K =1 and G = A

Assume that G/K = Aec.23. Note that every non-identity element of Ag.23 is vanishing
in As.23 (see the Atlas[9]), and so G/K satisfies the assumption of (2). Then by using
the same argument in the final paragraph of (iv), we conclude that K = 1 and G £ Ag.2;.
Then we have proved that (3g) holds. This completes the proof of (3).

Finally, we prove (4). Then we assume that the period of 2 in Vo(G) is 1. We
have proved that either M = A;, or M is isomorphic to one of the following groups:
L>(q), g = 2% or g is a Fermat prime or Mersenne prime, or g = 9; Sz(2"*1), n = 1; L3(4).

Suppose that M/K = M = A,;. By (3) we have that G/K = A;. By checking in
Atlas[9],we have that 4 € V 0(G/K), and thus by Lemma 1.8 we get that the period of 2
in V o(G) is greater than 1, a contradiction. Hence, M/K £ A;. It follows that M/K is
isomorphic to a simple group of Lie type. Then by Lemma 1.2, Lemma 1.3 and Lemma
1.4, we conclude that every non-identity element of M/K is a vanishing element of G/K.
Then, if a Sylow 2-subgroup of M/K is not elementary abelian, then G/K has a vanishing
element of order 4, and so by Lemma 1.8 we conclude that the period of 2 in V 0o(G) is
greater than 1, a contradiction. So, we conclude that a Sylow 2-subgroup of M/K is an
elementary abelian 2-group, and thus M/K = L[,(2k) with kK = 2. Then by (3) we have
that G = [,(2%), that is, (4) holds. This completes the proof of the theorem. 2

Corollary 2.6[17, Main Theorem]. Assume that Vo(G) = Vo(L2(29)) with a = 2. Then
G = L»(29).

Proof. Let K be the maximal solvable normal subgroup of G. By the hypothesis,
Lemma 1.3 and [13, 8.27, p.213], we have that V o(G) = V o(L2(29)) = *(L2(29)) = {2, all
factors of 29 — 1 and 29 + 1} — {1}. Hence, (G) is disconnected and n(I'(G)) = 3. Then



by Lemma 1.7 we conclude that G is nonsolvable. Clearly, 2 is an isolated vertex in

FLG), and the period of 2 in Vo(G) is 1, It follows by Theorem 2.5(4) that G = L,(2%).

Then by Lemma 1.3 we have that *(G) = Vo(G) = Vo(L2(29)) = n*(L2(29)), and thus
e e

7Te(G) = me(L2(29)). Hence, by [14] we conclude that G = [,(29). This completes the

proof. 2

By Corollary 2.6, the simple group L,(29) with g = 2 is V-recognizable.

Theorem 2.7. Let G be a nonsolvable group, and let K be the maximal solvable normal subgroup
of G. If 3 /e V(I (G)) and 2 is an isolated vertex of [(G), then G/K = Sz(227+1) with n = 1.

Proof. Put G = G/K. By the hypothesis and Theorem 2.5, G has a normal subgroup
M such that K < M ,M = M/K is a simple group. By the hypothesis we have that
3 /€ V(I(G)). Then by Lemma 1.1 we have that 3 /||M|. A simple group S with 3 /||S]| is
isomorphic to Sz(2"*1) with n = 1(see [15, 3.7 Remarks, p.188]). Hence, M = Sz(22+1)

with n = 1. Then by Theorem 2.5(3) we conclude that G/K = Sz(227*1) with n = 1. This
completes the proof of the theorem. 2

Theorem 2.8. Let G be a nonsolvable group. Assume that G satisfies the following three condi-
tions: (i) 3 /€ V (I(G)), (ii) 2 is an isolated vertex of T(G), and (iii) The period of 2 in V o(G) is 2.

Then G = Sz(227+1) with n = 1.

Proof. Let K be the maximal solvable normal subgroup of G. By Theorem 2.7 we
have that G/K = Sz(22*1), where n = 1. Then, since the period of 2 in Vo(G) is 2,

by Theorem 2.5(3) we conclude that G = S5z(22"*1). This completes the proof of the
theorem. 2

Corollary 2.9[18, Main Theorem]. If Vo(G) = Vo(Sz(22"+1)), where n = 1, then G =
Sz(22r+1),

Proof. Since S5z(227+1) is a simple group of Lie type, by Lemma 1.3 we have that
V o(5z(227+1)) = t%(Sz(227+1)). We have that 71.(Sz(22+1)) = {1, 2, 4, all factors of (227+1 —1)
and (2271 — 2n+1 + 1), and (227*1 + 27+1 + 1)}(see [16]). In addition, 3 does not divide
|Sz(227+1)|(see [15, 3.7 Remarks, p.188]). Then, since V o(G) = V o0(S5z(2?2"*1)) by the
hypothesis, we conclude that 2 is an isolated vertex in I(G), 3 /€ V (I(G)) and the period
of 2 in OV (G) is 2. It follows by Theorem 2.8 that G = Sz(22m+1), where m = 1. Then

we have that Vo(Sz(Zz’"*lH = VoéG) = Vo(ZSz(Zz’"*l)). On the other hand, we have that
V o(S5z(22m+1)) = rtx(Sz(22m+1)) and V o(Sz(227+1)) =" t*(5z(22"*1)). Hence, we have that

TTe(S52(227*1)) = 11.(S2(22m+1)) = t.(G), and thus G = Sz(227+1) (see [16]). This completes
the proof.

By Corollary 2.9, the simple group Sz(22"+1) is V-recognizable.
By Theorem 2.5 we get the following.

Corollary 2.11. Let G be a nonsolvable group. The following two propositions hold:
(1) If the period of 2 in Vo(G) is 1 and T'(G) =T (L2(2")), where n = 2, then G = L,(2").
(2) If the period of 2 in Vo(G) is 2 and T(G) = I(Sz(22"+1)), then G = Suz(22"+1).

The following theorem is an improvement of [19,Theorem 1.1].

Theorem 2.12. Assume that G is nonsolvable and every element in V o(G) is a prime power.
Then the following propositions (1),(2) and (3) hold:

(1) If O2(G) = 1, then G is isomorphic to one of the following groups: As, As, L2(7), L2(8), L2(9),
L2(17), L3(4), 52(8), 52(32) and Ag.2s.

(2) If 02(G) /=1, then one of the following holds:

(2a) The period of 2 in Vo(G) is greater than 1 and G = [N]A, where A = As = SL,(4) and
N (= 02(G)) is the direct product of minimal normal subgroups of G, each of which is of order 2* and
as a G/N-module is isomorphic to the natural GF (22)SL,(22)-module.(We denote by [A]B the split
extension of its normal subgroup A by a complement B.)

(2b) The period of 2 in Vo(G) is greater that 1, G/O2(G) = Lx(8), and 0:(G) is the direct
product of minimal normal subgroups of G, each of which is of order 26 and as a G/0O»(G)-module is
isomorphic to the natural GF (23)SL,(23)-module.



(2c) The period of 2 in V o(G) is greater than 2, G/0O,(G) = Sz(23), and O,(G) is the direct
product of minimal normal subgroups of G, each of which is of order 212 and as a G/0,(G)-module
is isomorphic to the natural GF (23)5z(23)-module of dimension 4.

(2d) The period of 2 in Vo(G) is greater than 2, G/O,(G) = Sz(2°), and O,(G) is the direct
product of minimal normal subgroups of G, each of which is of order 22° and as a G/0,(G)-module
is isomorphic to the natural GF(2°)Sz(2°%)-module of dimension 4.

(3) If the period of 2 in Vo(G) is 1, then G = As or L,(8).

Proof. Let K be the maximal solvable normal subgroup of G. By the hypothesis and
Proposition 2.1,G is nonsolvable, 2 € V (I(G)), and 2 is an isolated vertex in (G).So, we
can apply Theorem 2.5.

By Theorem 2.5, G has a normal series K < M < G such that M/K is a simple group,
G/K < Aut(M/K) and G/M < Out(M/K). Furthermore, M/K is isomorphic to one of the
following groups: A7; L2(q), g = 2" with n = 2 or g is a Fermat prime or Mersenne prime,
or g =9; Sz(22r*1), n = 1; L3(4). Hence, either M/K = A; or M/K is a simple group of Lie
type.

Next, we show that if K > 1, then K is a 2-group. Suppose that K > 1 and K is not a
2-group. Then G has a normal series 1 < T <R < K < G such that R/T is a chief factor
of G of odd order. Suppose T /= 1. Considering the group G/T, by induction we may
assume that K/T is a 2-group, and so R/T is a 2-group, a contradiction. Hence, 7T = 1
and R is an elementary abelian r-group, where r is an odd prime. Considering the group
G/R, by induction we may assume that K/R is a 2-group. It follows that K = RP, where
P is a 2-group. By Burnside {p, g}-theorem, G has an s-element g, where s is a prime with
r/=s /=2. Assume that M/K = A;. By Theorem 2.5(3) we have that G/K = M/K = A;.
Noting that (A7) = {2,3,5,7}, Vo(A;) = {2,3,4,5,7} and n*(A7) = {2,3,4,5, 6, 7}(see the
Atlas[9]), by Lemma 1.8 we conclude that gk S V an(G). Assume that M/K is a simple
group of Lie type. Then by Lemma 1.3 and Lemma 1.8 we have that gK € V an(G))(We
may assume that g € M ). So, in any case, we have that gk < Van(G). Then, since every
element in Vo(G) is a prime power, < g > acts fixed-point freely on K = RP, and so K is
nilpotent. Hence, by Theorem 2.5(2) K is a 2-group, a contradiction. So, K is a 2-group
and K = 0,(G).

We already know that either G/K = A; or M/K is a simple group of Lie type. We
discuss two cases separately as follows..

(1) G/K = A7

Suppose K > 1. Then K = 0,(G) and G/0,(G) = A;. We have that Vo(G/0,(G)) =
Vo(A7)={2,3,4,5, 7} and 11.(G/02(G)) = (A7) = {1, 2,3, 4,5, 6, 7}. A7 has an irreducible
character of 3-defect zero (se the Atlas[9]), and so evert element in G whose order is
divisible by 3 is vanishing in G. Hence, letting x be any 3-element of G, x0O,(G) €
V an(G/0,(G)), and so by Lemma 1.8 we have that x0,(G) < V an(G). It follows that
the order of every element in xO,(G) is a prime power. Hence, letting P be a Sylow
3-subgroup of G, P acts fixed-point freely on O,(G), and thus P is a cyclic group, con-
tradicting the fact that a Sylow 3-subgroup of A; is an elementary abelia group of order
9. So, K=1 and G = A;.

(1) M/K is a simple of Lie type.

In this case, by Lemma 1.2, Lemma 1.4 and Lemma 1.8, we conclude that every
element of i7*(M/K) is a prime power, and so M/K is isomorphic to one of the following
groups As (= Li(4)), La(7), L2(8), L2(9) (= As), L2(17),52(8) and Su(32) (see [11, Theorem
1.7]). It follows from Theorem 2.5(3) that either (1) holds or one of the following cases
occurs:

(i) O2(G) /=1, the period of 2 in V0o(G) is greater than 1, and G/O,(G) = As (= Ly(4)).

(ii) O2(G) /=1, the period of 2 in V0o(G) is greater than 1, and G/0O,(G) = L,(8).

(iii) O2(G) /=1, the period of 2 in Vo(G) is greater than 2, and G/0,(G) = 5z(23).

(iv) O2(G) /=1, the period of 2 in Vo(G) is greater than 2, and G/O,(G) = 5z(2°).

In addition, by Lemma 1.3 and Lemma 1.8 we conclude that G — 0,(G) € V 0o(G), and
so every element in 77.(G) is a prime power. Then by [11,Theorem 1.7] we conclude that
one of (2b),(2c) and (2d) hold. Now, we assume that G/0,(G) = As (= L»(4)). Then we
have that |G| =27 -3-5. Let x € G be of order 3. By Lemma 1.3 and Lemma 1.8 we have
that xO2(G) < Van(G) and x20,(G) < V an(G). It follows that < x > acts point-fixed freely
point on O,(G). Then it is obvious that Cs(< x >) =< x >, and thus by [11, Theorem



1.7] and [20, Theorem] we conclude that G = [N ]A, where A= As = [,(4) and N (= 02(G))
is the direct product of minimal normal subgroups of G, each of which is of order 24 and
as a G/N -module is isomorphic to the natural GF (22)SL,(22)-module. Furthermore, by
Theorem 2.5(3) we have that the period of 2 in V o(G) is greater than 1. So, (2a) holds.
Then (2) holds.

By Theorem 2.5(4), (3) holds. This completes the proof of the theorem. 2.

3 Three basic theorems

The following three theorems are useful for the investigation of Conjecture A and
Problem B.

Theorem 3.1. Let S be a simple group with S & A;, and assume that GK(S) is disconnected and
n(GK(S)) = 3. Assume that Vo(G) = Vo(S). Then G has a normal series K < M < G such that
K is the maximal solvable normal subgroup of G, M/K is a simple group and G/K < Aut(M/K).
Moreover, (G) = n(S), T(G) = I(S) = GK(S) and n(GK(S)) = n(GK(M/K)). In addition, the
following two statements hold:

(1) If S is not isomorphic to any one of the following groups: M2, M2, Ma4, J2, HS, Suz, Ru, Co1,
Co,, BM and A, with n = 7, then V o(G/K) S m.(S).

(2) If Sand M/K are not isomorphic to any one of the following groups: M1z, M2, M2a, Jo, HS, Suz,
Ru, Coy, Co,, BM and A, with n = 7, then m.(M/K) S t.(S).

Proof. Since S is a simple group and S £ A;, by Lemma 1.10 we have that I'(S) =
GK(S). Then, since Vo(G) = Vo(S), we have that I(G) = I(S) = GK(S). It follows
by the hypothesis that I(G) is disconnected and n(l(G)) = 3. Then by Lemma 1.7
we conclude that G is nonsolvable. G £ A;; otherwise, Vo(A7) = Vo(G) = Vo(S), and
thus by Theorem 2.5 we have that S = A; (see also [19, Theorem 1.4]), contradicting
the hypothesis. It follows by Theorem 2.4 and Lemma 1.5 that G has a normal series
K < M < G such that K is the maximal solvable normal subgroup of G, M/K is a simple
group, G/K < Aut(M/K), and n(GK(S)) < n(GK(M/K)). By Lemma 1.9 we have that
ni(G) = V (I'(G)) = V (I(S)) = r(S). Hence, 1t(G) = ri(S).

Assume that S is not isomorphic to any one of the following groups: M1, Ma.;, Maa, J>,
HS, Suz, Ru, Co,, Co,, BM and A, with n = 7. Then by Lemma 1.3 we have that Vo(G) =
V o(S) = z(S). By Lemma 1.8 we have that each element of V o(G/K) is a factor of some
element of Vo(G). Then each element of Vo(G/K) is a factor of some element of %(S),
and so V o(G/K) < rg7(S), that is, (1) holds.

Assume that S and M/K are not isomorphic to any one of the following group-
s: Mz, Ma3, Maa, J2, HS, Suz, Ru, Co1, Coz, BM and A, with n = 7. Then by Lemma 1.3

we have that Vo(M/K) = 7re*(M/K) and Vo(S) = n*(S) Furthermore, by Lemma 1.2
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completes the proof of the theorem 2

Theorem 3.2. Let S be a simple group. Assume that n(GK(S)) = 2 and there exists a connected
component p of GK(S) such that p is not a complete graph. Suppose that V o(G) = Vo(S). Then G
has a normal series K < M < G such that K is the maximal solvable normal subgroup of G, M/K
is a simple group and G/K < Aut(M/K). Moreover, i(G) = n(S), I(G) = I(S) = GK(S) and
n(GK(S)) = n(GK(M/K)). In addition, the following two statements hold:

(1) If S is not isomorphic to any one of the following groups: M2, M2, Ma4, J2, HS, Suz, Ru, Co1,
Co,, BM and A, with n = 7, then V o(G/K) S m.(S).

(2) If Sand M/K are not isomorphic to any one of the following groups: M1z, M2, M2a, J2, HS, Suz,
Ru, Coy, Coz, BM and A, with n = 7, then me(M/K) S mt.(S).

Proof. Since n(GK(S)) = 2 by the hypothesis, we have that S £ A; because n(GK(A)) =
3 (see the Atlas[9]). Hence by Lemma 1.10 we have that I(S) = GK(S). Then, since
V o(G) = V o(S) by the hypothesis, we have that I(G) = I(S) = GK(S), and so by the
hypothesis we have that n(I'(G)) =2 and (G) has a connected component p such that p
is not a complete graph. Hence, by Lemma 1.7 we know that G is nonsolvable. G £ Ay;
otherwise, Vo(G) =V o(A7)={2,3,4,5, 7} and n(I'(G)) = 4, a contradiction. Then, by using



the same argument as in the proof of Theorem 3.1 we conclude that the theorem holds.
2

Theorem 3.3. Let S be a simple group, and assume that S satisfies the following two conditions:
(i) S is not isomorphic any one of the following groups: Mi,, M3, Maa, J>, HS, Suz, Ru, Co,, Co,, BM
and A, with n=7; (ii) If t.(G) = 1te(S), then G = S. Then the following proposition (*) holds:
(*) Assume that n(G) =mn(S), Vo(G) =V o(S)and G/K = S, where K is the maximal solvable
normal subgroup of G, then K=1and G= S.

Proof. Suppose that K > 1. Let V be a normal subgroup of G such that V < K and
K/V is a chief factorof G. Set G = G/V. Clearly, G /K = G/K= S,and K (= K/V) is an
elementary abelian p-group, where p € 1(G) = 7(S). By the hypothesis and Lemma 1.3
every non-identity of S is a vanishing element of S, that is, 71*(S) = V o(S). Then every
non-identity of G /K ( £ S) is a vanishing element in G /K, and so by Lemma 1.8 we have
that

G-KC Van(g).
It follows that n*e(é) c Vo(g) U {p}, where p € 1(G) = 7(S). By Lemma 1.8, every element
inVVo(G) is a factor of some_element in Vo(G)(=Vo(S) = ne*(g)). Hence, n*E(G) c n:(s)).
On the other hand, since G /K = S, we have that 1(S) € 1*(G). Therefore, we get that
e e
e (G) =1e(S). Then by the hypothesis we have that G/V=G = S.Then, sinceG/K= S,
we get that V =K, a contradiction. So, K =1 and G £ S. The proof is finished. 2.

4 Several results related to Conjecture A

In this section, we will use theorems 3.1, 3.2 and 3.3 to establish several results
related to Conjecture A. For this, we first give a table about simple Ks;-groups. Let
S be a simple group. If |7(S)| = n, then S is called a simple K,-group. If S is a
simple Ks-group, then S is isomorphic to one of the following groups: As (= L»(22)), Ag(=
L2(32)), L2(7), L2(8), L2(17), L3(3), Uz(3) and Uas(2) (see [21, p.12]). By checking in the Atlas
[9], we obtain the following Table 1.

Table 1 Simple Ks-groups

G G| (G) =VolG) | n(r(G)) = n(GK(G))
As 22-3.5 {2,3,5} 3

L>(7) 23.3.7 {2,3,47) 3

L>(8) | 23-32.7 {2,3,7,9 3

Lx(17) | 23-32.17 | {2,4,8,3,9 17} 3

L3(3) | 24-33.13 | {2,3,4,6,8 13} 2

Us(3) | 25-33.7 | {2,3,4,6,7,8 12} 2

Ua(2) | 26-34.5 | {2,3,4,56,9 12} 2
Ae 23.32.5 {2,3,4,5) 3

Let py, ---, p, be distinct primes, and let |G| = p° ---p° - n, where n is a {ps,---, p/}-
r
number. We write |G|y - p } =p%---p°" and |G|, = pot.
1 r 1 r 1 1

Theorem 4.1. Assume that |G|sy = |L2(31)|(3,53 and Vo(G) = Vo(L2(31)). Then G =
L>(31).

Proof. We have that |[,(31)]| = 2°-3-5-31 and 7%(L>(31)) =V o(L2(31)) ={2, 3, 4,5, 8,15, 16, 31}
(see the Atlas [9]). Clearly, GK(L2(31)) has three connected components: m; = {2},
2 = {3,5} and 13 = {31}. Since Vo(G) = Vo(L2(31)) by the hypothesis, by Theorem 3.1
we conclude that G has a normal series K <M < G such that K is the maximal solv-
able normal subgroup of G, M/K is a simple group and G/K < Aut(M/K). Moreover,
(G) = n(L2(31)) = {2, 3, 5, 31}, (G) = M(L2(31)) = GK(L2(31)) and n(GK(M/K)) = 3. Notice
that 2 is an isolated vertex of I(G)(= GK(L2(31)), and so we can use Theorem 2.5.

Clearly, n(M/K) < {2,3,5,31}. Then either |nt(M/K)| =3 or n(M/K) ={2,3,5,31}. We
discuss the two cases separately as follows.



() e(M/K)| = 3.

In this case, M/K is a simple Ks-group. By the hypothesis we have that |G|3s) =
|L2(31)|¢3,5y = 3 - 5. Then, noting that n(GK(M/K)) = 3 and n(M/K) < {2, 3, 5, 31}, by
Table 1 we conclude that M/K = As(= L,(4)). Hence by Theorem 2.5(3) we have that

G/K = As.lt follows that |G/K| =22-3-5and n(K) < {2, 31}. Let x be any element of G of
order 3. By Lemma 1.3 and Lemma 1.8 we have that xK € Vo(G)(={2, 3,4, 5, 8, 15, 16, 31}).

Then, since 2 and 31 are isolated vertices of I(G)(= GK(L2(31))), < x > acts fixed-point
freely on K, and thus K is nilpotent. Hence, by Theorem 2.5(2) we get that K = 0,(G).
Then we have that 71(G) = 11(As) = {2, 3, 5}, contradicting the fact that 31 € r7(G).

() (M/K) = {2, 3,5, 31}.

In this case, by Table 1 in [22] we have that either M/K = L[,(31) or M/K = L3(5). If
M/K = L3(5), then |M/K| =25-3-52.31(see the Atlas[9]), and 3 -5 = |G|3;5} = |M/K]|{3,5} =
3 - 52, a contradiction. Therefore, we have that M/K = [,(31). Since G/K < Aut(M/K),

either G/K = L5(31) or G/K = L5(31).2 (see the Atlas[9]). Suppose that G/K = [,(31).2.
Then 6 € Vo(G/K) (see the Atlas[9]), and so by Lemma 1.8 we conclude that 6 is a factor

of some elementin Vo(G)(={2, 3,4, 5, 8, 15, 16, 31}), a contradiction. Hence, G/K = [,(31).
We know that,for a group H, if rte(H) = me(L2(31)), then H = [,(31) (see [23, Theorem

2.7]). Therefore, by Theorem 3.3 we conclude that K =1 and G = [,(31). This completes
the proof of the theorem. 2

By Table 1 in [22] and by checking in the Atlas[9], we get the following Table 2.

Table 2 Simple groups G with 17(G) = {2, 3, 5, 11}.

G G| Vo(G) Vv (F[(G) n(r(G)
[>(11) | 22-3.5-11 {2,3,5,6, 11} {2,3,5, 11} 3
M1y 2¢.32.5.11 {2,3,4,5,6, 8,11} {2,3, 5,11} 3
M1z 26.33.5.11 {2,3,4,5,6,8, 10, 11} {2,3, 5,11} 2
Us(2) | 210.35.5.11 | {2,3,4,56,8,9,11,12, 15,18} | {2, 3,5 11} 2

Theorem 4.2. The following two propositions hold:
(1) Assume that |G|11 = |L2(11)|11 and V o(G) = Vo(L2(11)). Then G = L,(11);

(2) Assume that |G|{z,33 = |L2(11)|{2,33 and Vo(G) = Vo(L2(11)). Then G = L,(11).

Proof. The proof of (1): We have that |L>(11)| = 22-3-5-11 and 3(L2(11)) = Vo(L2(11) =
{2, 3,5, 6, 11} (see Table 2 and Lemma 1.3). Clearly, GK(L>(11) has three connected
components: {2, 3}, {5} and {11}. By the hypothesis we have that V o(G) = V o(L>(11)).
Then by Theorem 3.1 we conclude that G has a normal series K < M < G such that
K is the maximal solvable normal subgroup of G, M/K is a simple group, and G/K <
Aut(M/K). Moreover, (G) = rt(L2(11)) = {2,3,5, 11}, I(G) = I'(L2(11)) = GK(L2(11) and
n(GK(M/K)) =z 3. It follows that n(M/K) < {2,3,5,11}, and M/K is either a simple
Ks-group or a simple K;-group.

(1) Assume M/K is a simple Ksz-group.

Since n(M/K) < {2, 3,5, 11} and n(GK(M/K)) = 3, by Table 1 we have that M/K = As
or Ae.

(1a) Assume that M/K = As.

Since G/K = Aut(M/K), G/K = As or Ss. If G/K = Ss, then 10 € Vo(G/K) (see
the Atlas[9]), and so by Theorem 3.1(1) we have that 10 € t*(L>(11)) = {2, 3, 5, 6, 11}, a
contradiction. So, we have that G/K = As(= L;(4)). It follows that |G/K| = 22 - 3 - 5.
Then, since 11(G) ={2, 3,5, 11} and |G|11 = |L2(11)|11 = 11 by the hypothesis, we have that
n(K) < {2,3,11} and |K|11 = 11. Let P be a Sylow 11-subgroup of K. We have that
|P| = 11. By Frattini argument we have that G = KNg(P), and so G/K = Ng(P)/Nk(P).
It follows that there exists a 3-element x € G — K such that < x >< Ng(P). Then,
since |Aut(P)| = 10, we have that [<x >, P] = 1, and so xP contains an element of order
k -33. By Lemma 1.3 and Lemma 1.8 we have that xP € xK < Van(G). It follows that
k-33 € Vo(G)=Vo(L2(11)) ={2,3,4,5,6,7,8,9, 12}, a contradiction.

(Ib) Assume that M/K= Ag (= L2(9)).

We have that |M/K| = |Ae| = 23:32.5, G/K < Aut(M/K) = Aut(Aes). Then |G/K| = 23-32.5
or 24 - 32 . 5(see the Atlas[9]), Hence, by using the argument used in (l1a) we will get a
contradiction.



(11) Assume M/K is a simple K;-group.

In this case, n(M/K) = {2,3,5,11}. Since n(GK(M/K)) = 3, by Table 2 we conclude
that M/K = Mi; or L(11). Then by Theorem 3.1(2) and Table 2 we conclude that
M/K = L,(11). Since G/K < Aut(M/K) = Aut(L2(11), we have that G/K = [»(11) or
L2(11).2 (see the Atlas[9]). If G/K = L»(11).2, then 10 € Vo(G/K), and so by Theorem
3.1(1) we have that 10 € t%(L,(11)) = {2, 3, 5, 6, 11}, a contradiction. Therefore, we have
that G/K = L,(11). For a group H, if rm.(H) = m.(L2(11), then H = L[,(11) (see Table 1 in
[24]). So, by Theorem 3.3 we conclude that K =1 and G = [,(11). This completes the
proof of (1).

The proof of (2) is left to the reader. The proof of the theorem is finished. 2

By using the same argument as in the proof of Theorem 4.2 we conclude that the
following theorem holds:

Theorem 4.3. Assume that |G|(3,11} = |Mh11]{3,113 and Vo(G) = Vo(M11). Then G = M.

By Theorem 3.2 and by using the argument used in the proof of Theorem 4.2, we
conclude that the following theorem holds.

Theorem 4.4. Let S be a simple group which is isomorphic to M, or Us(2). Assume
that |G|3,113 = |Sl(3,113 and V o(G) = V o(S). Then G £ S.

By Table 1 in [22] and by checking in the Atlas [9], we obtain the following Table 3.

Table 3 Simple groups G with 17(G) = {2, 3, 5, 13}.

G |G| vole) =mrlG) n([(G) = n(GK(G))
L>(25) | 23.3.52.13 {2,3,4,5,6,12,13} 3
Us(4) 26.3.52.13 {2,3,4,5,10, 13, 15} 2
L4(3) 27-36.5.13 {2,3,4,5,6,8 10, 12, 13, 20} 2
54(5) 26.32.54.13 | {2,3,4,5,6,10,12, 13, 15, 20, 30} 2
2F4(2)" | 211.33.52.13 {2,3,4,5,6,8, 10,12, 13, 16} 2

Theorem 4.5. Assume that |G|13 = |L2(25)]|13 and V o(G) = V o(L2(25)). Then G = L,(25).

Proof. |L>(25)| =23-3-52-13 and *(L»(25)) = Vo(L2(25)) ={2, 3,4, 5,6, 12, 13} (see Table
3). Clearly, GK(L>(25))) has three connected components: {2, 3}, {5} and {13}. By the
hypothesis we have that V o(G) = Vo(L2(25)) ={2, 3,4, 5, 6,12, 13}. Then by Theorem 3.1 G
has a normal series K < M < G such that K is the maximal solvable normal subgroup of
G, M/K is a simple group and G/K < Aut(M/K). Moreover, 1i(G) = t(L»(25)) = {2, 3, 5, 13},
rN(G) = N(L2(25)) = GK(L2(25) and n(GK(M/K)) = 3. It follows that n(M/K) < {2, 3, 5, 31}.
Then |t(M/K)| = 3 or 4. We discuss the two cases separately as follows.

(1) Assume that |(M/K)| = 3.

In this case, M/K is a simple Ks-group. Then, since n(M/K) < {2, 3,5, 13} nd n(GK(M/K) =
3, by Table 1 we conclude that M/K = As or As.

(1a) Assume that M/K = As (= Ly(4)).

Since G/K < Aut(M/K) = Aut(As) = Ss, we have that either G/K = M/K = As or
G/K £ Ss. If G/K = S5, then 10 € Vo(G/K)(see the Atlas[9]), and so by Lemma 1.8 we
conclude that 10 is a factor of some elementin Vo(G) ={2, 3, 4, 5, 6, 12, 13}, a contradiction.
Hence, we have that G/K = As. Then |G/K| =22-3:5 and 13 € ri(K). Let R be a Sylow
13-subgroup of K. By the hypothesis we have that |R| = |G|13 = |[L2(25)]13 = 13. In view of
Frattini argument, we have that G = KNg(R), and so G/K = Ng(R)/Nk (R). Then there
exists a 5-element x € G — K such that x € Ng(R). We have that |Aut(R)| = 13 -1 = 12.
Then, since x is a 5-element, we have that [< x >, R] = 1, and so xR contains an element
of order k - 65. Clearly, xK is an element of G/K(= As) of order 5. By Lemma 1.3 and

Lemma 1.8, we have that xK < V an(G). It follows that k-65 € Vo(G)={2,3,4,5,6,12,13},
a contradiction.

(1b) Assume that M/K = As.

Note that As = [»(9), |Out(As)| = 4 and V 0(A¢) = 1*[As) = {2, 3, 4, 5} (see Table 1). Since
G/K < Aut(M/K) = Aut(Ae), by checking in Atlas[9] we conclude that |G/K| =23:32-5 or
24 .32 .5, Notice that every element of G/K of order 5 is vanishing in G/K(see the Atlas
[9]). So, by using the same argument as in (la) we will get a contradiction.



(11) Assume that n(M/K) = {2, 3, 5, 13}.

Noting that n(GK(M/K)) = 3, by Table 3 we conclude that M/K = [,(25). Then, since
G/K < Aut(M/K), by checking in the Atlas [9] we conclude that G/K = M/K = L[,(25).
We know that, for a group H, if t.(H) = r.(L2(25)), then H = [,(25) (see [24, Table 1]).

Therefore, by Theorem 3.3 we conclude that K =1 and G = L[,(25). This completes the
proof of the theorem. 2

By using Theorem 3.2 and by using the same argument as in the proof of Theorem
4.5, we conclude that the following theorem holds.

Theorem 4.6. Assume that |G|13 = |U3(4)|13 and V o(G) = Vo(Us(4)). Then G = Us(4).

We have that |L»(19)| =19(19 - 1)(19+1)/2 =22-32-5-19 and jt*(L2(19)) = Vo(L2(19)) =
{2,3,5,9, 10, 19} (see the Atlas[9]). Clearly, GK((L>(19)) has three connected components:
{2,5}, {3} and {19}. In addition, if S is a simple group with n(S) = {2,3,5, 19} and
|S|¢s,10 = 519, then S = [,(19) (see Table 1 in [22]). So, by using the same argument as

in the proof of Theorem 4.5, we can prove that the following theorem holds.

Theorem 4.7. Assume that |G|s,10} = |L2(19)|(s,19y and V o(G) = Vo(L2(19)). Then G =
L5(19).

By checking in the Atlas[9], we get that |L[3(8)| = 2°-32-72-73 and r*(L3(8)) = V o(L3(8)) =
{2,3,7,9, 14, 21, 63, 73}. Clearly, GK(L3(8)) has two connected components: 7, = {2, 3, 7}
and r; = {73}, and 711 is not a complete graph. In addition, if S is a simple group with
ni(S) ={2,3,7,73}, then S = [5(8) (see Table 1 in [22]). According to these information,
by Theorem 3.2 we conclude that the following theorem holds.

Theorem 4.8. Assume that |G|73 = |L3(8)|73 and V o(G) = Vo(L3(8)). Then G = L3(8).
Theorem 4.9. Assume that |G|{17,19) = |J3|(17,19y and V o(G) = Vo(J3). Then G £ Js.

Proof. |J/3| =27 -35.5-17 19, and GK(J3) has three connected components: m; =
{2, 3, 5}, m> = {17} and 113 = {19} (see the Atlas[9]). By the hypothesis we have that V o(G) =
V o(J3). Hence, by Theorem 3.1 G has a normal series K < M < G such that K is the
maximal solvable normal subgroup of G, M/K is a simple group and G/K < Aut(M/K).
Moreover, (G) =nt(J3) =2:-3-5-17-19, I(G) = I'(J3) = GK(J3) and n(GK(M/K)) = 3. It
follows that n(M/K) = {2,3,5,17, 19}, and |n(M/K)| =3, 4 or 5.

(1) Assume that |(M/K)| = 3.

By Table 1 we conclude that M/K = As, As or L»(17). By using the same argument
as in (1) of the proof of Theorem 4.5, we will get a contradiction.

(11) Assume that n(M/K)| = 4.

By Table 1 in [22] we have that M/K = S4(4) or L>(19).

Assume that M/K = Ss(4). Then |M/K| = 28 - 32 .52 . 17(see the Atlas[9]). Since
G/K < Aut(M/K), we have that |G/K| = 27 - 32 - 52 . 17, where n = 8, 10 or 12(see the
Atlas[9]). Then, since by the hypothesis |G|{17,19} = |/3|{17,10} = 17 - 19, we have that
ni(K) € {2, 3,5, 19} and |K|1s = 19. Let P be a Sylow 19-subgroup of K. Then we have
that |P | = 19. Let x € M be of order 17. Since K ¢ G and (|K|, 17) = 1, we may assume
that < x >< Ng(P ), and so [< x > P] = 1. By Lemma 1.2,Lemma 1.3, Lemma 1.4 and
Lemma 1.8, we have that xP € xK < V an(G). It follows that 17 and 19 are adjacent in
M(G)(= GK(J3)), a contradiction.

Assume M/K = L,(19). Since G/K < Aut(M/K) = Aut(L2(19)), we have that |G/K| =
22.32.5.19 or 23:32.5:19 (see the Atlas[9]). Then, since |G|{17,19) = 17 - 19, we have
that (|K|, 19) = 1 and |K|17 = 17. Thus, by using the same argument as in the above
paragraph, we will get a contradiction.

(111) Assume that |z(M/K])| = 5.

In this case, t(M/K|) ={2, 3,5, 17, 19}. By Table 1 in [22] we get that M/K = J;. Then,
since G/K < Aut(M/K), by checking in Atlas[9] we conclude that G/K = M/K = J3. We
know that, for a group H, if t.(H) = n.(J3), then H £ J; (see [23, Theorem 2.7]).
Therefore, by Theorem 3.3 we conclude that K = 1 and G = J;. This completes the
proof of the theorem. 2

Theorem 4.10 Assume that |G|is = |J1]19 and V o(G) =V o(J1). Then G = J1.



Proof. |J;| =23:-3-5-7-11-19 and Vo(J1) = *(J1) = {2, 3,5, 6, 7,11, 15, 19} (see the
Atlas[9]). Clearly, GK(J1) has four connected components:{2, 3, 5}, {7}, {11} and {19}. By
the hypothesis we have Vo(G) = Vo(J1). Then by Theorem 3.1 we conclude that G has
a normal series K < M < G such that K is the maximal solvable normal subgroup of G,
M/K is a simple group and G/K < Aut(M/K). Moreover, n(G) = nt(J1) = {2, 3,5, 7,11, 19},
rG) = rJ1) = GK(J1) and n(GK(M/K)) = 4.

Clearly, we have that |(M/K)| = 4. Suppose that |(M/K)| = 4. Then n(GK(M/K)) =
4, and thus the order of every element of M/K is a prime power. It follows by [25, Table
3] that M/K = L3(4). We have that 9 € Vo(L3(4))(see the Atlas[9]). Hence, by Lemma 1.2,
Lemma 1.4 and Theorem 3.1(1), we have that 9 € n*(J1) = {2,3,5,6,7,11, 15,19}, a con-
tradiction. So, we have that |[7(M/K)| = 5. Then, noting that n(M/K) < {2,3,5, 7, 11, 19},
by [22, Table 1] we conclude that M/K is isomorphic to one of the following groups:
M3, A11, McL, Hs, A1z, Us(2), U3(19), La(7), J1, L3(11) and HN. Then by [25, Table 3] we get
that M/K = M22 or ./1.

Assume that M/K = Ma,,. Since G/K < Aut(M/K) = Aut(M>z), we have that G/K = M,;
or M,,.2 (see the Atlas[9]). If G/K = M>,.2, then 14 € V o(G/K) (see the Atlas[9]), and
so by Theorem 3.1(1) we have that 14 € n*(/1) = {2, 3,5, 6, 7,11, 15, 19}, a contradiction.
Hence, we have that G/K = M,,. It follows that |G/K| =27-32:5-7-11 (see the Atlas[9]).
Then by the hypothesis we have that |K|i5 = |G|19 = |/1]19 = 19. So, by using the same
argument as in (1) of the proof of Theorem 4.9 we will get a contradiction.

Assume that M/K = J;. Since G/K = Aut(M/K) = Aut(J1) and |Out(J1)| = 1 (see the
Atlas[9]), we have that G/K = J;. We know that, for a group H, if .(H) = t.(/1), then
H=Z= J; (see [23, Theorem 2.7]). Therefore, by Theorem 3.3 we have that K = 1 and
G = J;. This completes the proof of the theorem.

Theorem 4.11. Assume that |G|z,7,11} = |Us(2)|{3,7,113 and Vo(G) = Vo(Ues(2)). Then G =
Us(2).

Proof. Note that Us(2) =2 As(2). We have that |Ug(2)| =215-36-5-7-11 and GK(Ue(2))
has three connected components: {2, 3, 5}, {7} and {11}(see the Atlas[9]). Then, since
Vo(G) = Vo(Ue(2)) by the hypothesis, by Theorem 3.1 we conclude that G has a normal
series K < M =< G such that K is the maximal solvable normal subgroup of G, M/K
is a simple group and G/K < Aut(M/K). Moreover, n(G) = nt(Us(2)) = {2,3,5,7, 11},
NG) = M(Us(2)) = GK(Us(2) and n(GK(M/K)) = 3. It follows that n(M/K) < {2,3,5,7,11},
and |t(M/K)| = 3,4 or 5.

(1) Assume that |(M/K)| = 3.

Noting that n(GK(M/K)) = 3, by Table 1 M/K is isomorphic to the following groups:As,
L>(7), L2(8) and As. By the hypothesis we have that |G|3,11} = |Us(2)| (3,113 = 3% - 11. So, by
using the same argument as in (1) of the proof of Theorem 4.2 we will get a contradiction.

(11) Assume that |t(M/K)| = 4.

Noting that n(M/K) < {2,3,5,7,11}, by [22, Table 1] we have that either n(M/K) =
{2,3,5,7} or {2,3,5,11}.

Assume that (M/K) = {2, 3, 5, 7}. Noting that n(GK(S4(7)) = 2 (see [25, Table 1]) and
n(GK(M/K)) = 3, by [22, Table 1] we conclude that M/K is isomorphic to one of the
following groups: A7.L>(49), Us(5), L3(4)As, Ao, J2, A1, Ua(3), Se(2) and @Q*(2). Then, since
G/K < Aut(M/K). by checking in the Atlas[9] we conclude that |K|;1 = 11. So, by using
the same argument as in (1) of the proof of Theorem 4.2, we will get a contradiction.

Assume that n(M/K) = {2, 3, 5, 11}. Then, by [22, Table 1] we conclude that M/K is
isomorphic to one of the following groups:L,(11), M11, M1, and Us(2). Hence, noting that
n(GK(M/K)) = 3, by [25, Table 2 and Table 3] we conclude that M/K = L,(11) or M.

Assume that M/K = [,(11). Since G/K < Aut(M/K) = Aut(L>11) and |Out(L11)| =2
(see the Atlas[9]), We have that |G/K| =22-3:5:11 or 23-3-5-11 (see the Atlas[9]),1(K) =

{2,3,5,7} and |K|7 = 7. So, by using the same argument as in (1) of the proof of Theorem
4.2 we will get a contradiction.

Assume that M/K = M(11). Since G/K < Aut(M/K) = Aut(M11) and |Out(Mi1)| = 1
(see the Atlas[9]), we have that G/K = M/K = M,. It follows that |G/K| =24-32-5-.11,
n(K) < {2, 3,5, 7} and |K|; = 7. So, by using the same argument as in (1) of the proof of
Theorem 4.2 we will get a contradiction.

(111) Assume that |t(M/K)| = 5.



In this case, n(M/K) = {2, 3,5, 7, 11}. Noting that n(GK(M/K)) = 3, by [25, Table 2
and Table 3] we conclude that M/K = M, or Us(2).

Assume that M/K = M,,. Since G/K < Aut(M/K) = Aut(M>2) and 7 is an isolated
vertex of I(G)(= M(Us(2) = GK(Ue(2))), by checking in the Atlas[9] we conclude that
G/K=M/K= Ms;;. It follows that |G/K| =27 -32-5-7-11, nt(K) < {2, 3, 5} and |K]|3 = 34.
Let P be a Sylow 3-subgroup of K. Then |Aut(Q(Z(P)))]|(34 — 1)(33 - 1)(32 - 1)(3 - 1).
So, by using the same argument as in (I) of the proof of Theorem 4.x we will get a
contradiction.

Assume that M/K = Ue(2). Since G/K < Aut(M/K) = Aut(Us(2)) and 7 and 11 are
isolated vertex of I(G)(= GK(Us(2)), by checking in the Atlas[9]) we conclude that G/K =
M/K = Us(2). We know that, for a group H, if me.(H) = me(Us(2), then H = Uq(2)(see [24,
Table 1]), and so by Theorem 3.3 we conclude that K =1 and G = Ug(2). This completes
the proof of the theorem. 2

Theorem 4.12. et S = 0-42) or Sg(2). Assume that |G| = |S| and Vo(G) = Vo(S). Then
G=S.

Proof. We only investigate the case S = O;(2); For the case S = Sg(2), the proof is
SV have that |0(2)] = 212:3%5.7:17, V0(0(2)) = 7*(0-(2)) = {2,3,4,5,6,7,8,9,10,12,15, 17,
21,30} (see the Atlas[9]). Clearly, GK(O-{2)) has two connected components: m; =
{2, 3,5, 7}and rr; = {17}, and t; is not a complete graph. By the hypothesis we have
that V o(G) = Vo(Q(2)). Then by Theorem 3.2 we conclude that G has a normal series
K < M = G such that K is the maximal solvable normal subgroup of G, M/K is a simple
group and G/K < Aut(M/K).

By the hypothesis we have that |G| = |02)| = 212-34-5-7-17. It follows that
n(M/K)<= {2,3,5,7,17} and |n(M/K)| =3, 4 or 5.

(1) Assume that |t(M/K)| = 3.

By Table 1 we conclude that M/K is isomorphic to one of the following groups:
As, L2(7), L2(8), L2(17), Us(3), Us(2) and As. Then by using the same argument as in (l) of
the proof of Theorem 4.2 we will get a contradiction.

(11) Assume that |t(M/K)| = 4.

by [22, Table 1] M/K is isomorphic to one of the following groups: A, L3(4), As, As, Us(3),
Se(2) and L;(16). Then by using the same argument as in (ll) of the proof of Theorem
4.9 we will get a contradiction.

(111) Assume that |t(M/K)| = 5.

In this case n(M/K) = {2,3,5,7, 175._ Noting that |G| = 212 - 3_4 -5-7-17, by [22, Table
1] M/K = O8 (2). Then, since |G| = | 8(2)|, we get that G = O8 (2). This completes the
proof of the theorem. 2

We have that [L5(2)| = 21°-32.5.7-31, and V o(Ls(2)) = mx(Ls(2)) = {2, 3,4,5,6,7, 8,12, 14,
15, 21, 31} (see the Atlas[9]). Clearly, GK(Ls(2)) has two connected composition: 7, =
{2,3,5,7} and 1> = {31}, and 11 is not a complete graph. So, by using the same argument
as in the proof of Theorem 4.12, we conclude that the following theorem holds:

Theorem 4.13. Assume that |G|s,7,313 = |Ls(2)](s,7,313 and Vo(G) = Vo(Ls(2)). Then G =
Ls(2).

5 Some results on Problem B

In this section, we establish several results on Problem B, that is, on V-recognition
of a simple group. We already know that the simple groups L[>(2°) and Sz(22"*1) are
V-recognizable (see Section 1).

Theorem 5.1. Assume that V o(G) = V o(L2(23)). Then G = L,(23), that is, L(23) is V-
recognizable.

Proof. We have that |[,(23)] = 23-3-11-23 and 11%(L2(23)) = Vo(L2(23)) = {2, 3,4, 6, 11, 12, 23}
(see the Atlas[9]). Clearly, n(GK(L2(23))) = 3. Then, since V o(G) = Vo(L2(23)) by the hy-
pothesis, by Theorem 3.1 G has a normal series K < M =< G such that K is the maximal



solvable normal subgroup of G, M/K is a simple group and G/K < Aut(M/K). Moreover,
i(G) = t(L2(23)) = {2, 3,11, 23}, T(G) = (L2(23)) = GK(L2(23)) and n(GK(M/K)) = 3. It
follows that n(M/K) < {2, 3, 11, 23}. Clearly, either |t(M/K)| = 3 or n(M/K) = {2, 3, 11, 23}.
By Table 1 we conclude that |t(M/K)| /= 3, and so n(M/K) = {2, 3,11, 23}. It follows

by Table 1 in [22] that M/K = L,(23). Then, since G/K < Aut(M/K) = Aut(L2(23)), by
checking in the Atlas[9] we conclude that G/K = M/K = [,(23). We know that, for a
group H, if rte.(H) = m.(L2(23)), then H = L;(23)(see [23, Theorem 2.7]). So, by Theorem

3.3 we conclude that K =1 and G = [,(23). The proof is finished. 2.
By Table 1 in [22] and by checking in the Atlas [9], we obtain the following Table 4.

Table 4 Simple groups G with n7(G) = {2, 3, 7, 13}.

G |G| Vo(G) = 3(G) V([(G)) n(r(G))
[(27) | 22-33.7-13 {2,3,7,13, 14} {2,3,7,13} 3
G>(3) 26.36.7.13 {2,3,4,6,7,89,12, 13} {2,3,7,13) 3
3D4(2) | 212.34.72-13 | {2,3,4,6,7,8,9,12,13,14,18,21,28} | {2, 3,7 13} 2
L>(13) 22.3.7-13 {2,3,6,7,13} {2,3,7,13} 3

Theorem 5.2. Assume that V o(G) = V o(L2(27)). Then G = L,(27), that is, L»(27) is V-
recognizable.

Proof. By Table 4, we have that 1*(£2(27)) = V o(L2(27)) = {2, 3, 7, 13, 14}. Clearly,
GK(L2(27)) has three connected components: {2, 7}, {3} and {13}. By the hypothesis
we have that Vo(G) = Vo(L2(27)). It follows by Theorem 3.1 that G has a normal
series K < M < G such that K is the maximal solvable normal subgroup of G, M/K
is a simple group, G/K < Aut(M/K). Moreover, n(G) = ni(L2(27)) = {2, 3, 7, 13}, [(G) =
N(L2(27) and n(GK(M/K)) = 3. In addition, if M/K is a simple group of Lie type, then
te(M/K) € 1te(L2(27)) = {1, 2, 3, 7, 13, 14}. Then, by Table 1 and Table 4 we conclude that
M/K = [,(27). Then, since G/K < Aut(M/K) = Aut(L2(27)) and each element in V o(G/K)
is a factor of some element in Vo(G) = Vo(L2(27)) = {2, 3, 7, 13, 14}(see Lemma 1.8), by
checking in the Atlas [9] we conclude that G/K = M/K = L3(27). We know that, for a
group H, if te(H) = meL2(27), then H = [,(27)(see [23, Theorem 2.7]). So, by Theorem
3.3 we conclude that K = 1 and G = L,(27). This completes the proof of the theorem. 2

By using the same argument as in the proof of Theorem 5.2, we conclude that the
following theorem holds:

Theorem 5.3 Assume that Vo(G) = Vo(Lx(13)). Then G = L,(13), that is, L2(13) is V-
recognizable.

Theorem 5.4 Assume that V o(G) = Vo(Js). Then G = Ja, that is, J4 is V-recognizable.

Proof. Let S be a simple group. Then n(GK(S)) < 6 (see[8]). We have that
n(GK(J4)) = 6 (see [25, Table 3]). Then, since Vo(G) = Vo(Js) by the hypothesis,
by Theorem 3.1 G has a normal series K < M < G such that K is the maximal
solvable normal subgroup of G, M/K is a simple and G/K < Aut(M/K). Moreover,
1i(G) = t(Ja),lN(G) = T(J4)) = GK(J4)) and n(GK(M/K)) = 6. Then, since n(GK(M/K)) = 6,
we have that M/K = J, (see [25, Table 3]). Hence, since G/K < Aut(M/K) = Aut(J4) and
|Out(Js)] = 1 (see the Atlas[9]), we get that G/K = J,. We know that, for a group H,
if te(H) = mc(J4), then H = J, (see [23,Theorem 2.7]).So, by Theorem 3.3 we have that
K=1 and G = J;. The proof is finished. 2.
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