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Abstract

The aim or the present analysis is to provide a visual representation of the
results of an analysis of the effects of temperature and mass diffusion on
MHD convective flow through a vertical porous plate. The nature of velocity
in respect to the many important factors appearing in the field equations was
not discussed at length. It is also shown that the boundary surface plays a
crucial role in the uniform suction. It is shown that the velocity decreases
with an increase in the Prandtl number. When the fluid reaches the
boundary layer, it reverses direction and continues to move ahead. As the
Prandtl number increases, it is shown that velocities must fall. There is
evidence of forward movement of the fluid after a brief period of reverse flow
toward the boundary layer. Additionally, as the Grashoff number rises, so
does the velocity of the fluid. When this occurs, progress temporarily halts
before picking up again. The apparent velocity then increases when the pore
size is increased. In general, speeds increase as pore diameters become
smaller. Here, we have a predominance of reverse flow, followed by forward
motion due to the predominance of fluid velocity. There is a strong
correlation between the Prandtl number and the flow rate.
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1. Nomenclature

A Suction parameter

C Dimensionless species concentration
C, | Specific heat at constant pressure
C" | Species concentration
C,. | Concentration at the wall

C; | Concentration in free stream

D Molecular diffusivity of the species
8 Gravity

Gc Modified Grashoff number

Gr Grashof number

Rarefaction parameter

h
k Thermal conductivity
K

Dimensionless Permeability parameter

K* | Permeability parameter

L Constant

M | Magnetic intensity

P Prandtl number

q,, | Heat flux at the wall

Sc Schmidt number

t Dimensionless time

t Time

T | Temperature

I. | Temperature of wall

T, | Temperature of fluid in free stream

u Dimensionless velocity component
u Velocity component
Vv Suction velocity

Vo | Constant mean suction velocity
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2. Greek Symbols

a : Thermal diffusivity

B Coefficient of thermal expansion
By : Coefficient of thermal expansion with concentration
€ : Amplitude (<<I)

@ Viscosity

v : Kinematic viscosity

g : Dimensionless temperature

p : Density

o : Stefan-Boltzmann constant

T :  Dimensionless shearing stress
7° :  Shearing stress

w : Dimensionless frequency

w" :  Frequency

3. Introduction

There are several commercial and ecological settings where radiative
convective flow is crucial. Applications are most common in areas including solar
energy, space exploration, energy efficiency, and cooling systems. The idea is mostly
used to the optimization and design of high-precision machinery seen in nuclear
power plants, aircraft propulsion systems, and gas turbines.

Stokes was the first to investigate the issue of a viscous incompressible fluid
on an endless horizontal plate flowing in its own plane. Since then, Brinkman [2] has
studied the influence of viscosity on dense particles in fluid. In subsequent work,
Stewartson [3] looked into the analytical solution for a viscous flow across a semi-
infinite horizontal plate. Next, Berman [4] looked into the impact of uniform suction
or injection on the constant flow of an incompressible fluid through porous barriers in
two dimensions. On the premise that the wall temperature changes linearly in the
direction of flow, Mori [5] subsequently investigated the current between two non-
conducting vertical plates. In continuation of this work, Macy [6] studied the
dynamics of flow in renal tubes with a constant cross section, permeable border, and a
radial velocity that changes as an exponentially decreasing function. Hall [7]
investigated a similar issue by employing the finite differences approach to ensure the
stability of the solution. After that, Mahajan et al. [8] looked at how natural
convective flows are affected by the viscous heat dissipation effect. A further study by
Soundalgekar and Thaker [9] looked at the impact of heat radiation on very thin gray
gas confined inside a vertically fixed plate. Later, Hossain et al. [10] used Rossland's
technique to investigate how radiation affects a vertical plate maintained at a fixed
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surface temperature. Raptis and Perdikis [11] revealed the results of a computational
study of the effect of heat radiation and convective flow through an infinite vertically
moving plate. Later, Antony Raj [12] studied the impact of a transversely applied
magnetic field on the flow through a semi-infinite vertical isothermal plate subject to a
homogenous heat flux due to thermal radiation.

It is quite apt and reasonable to state that, Tessone et al. [13] focused on the Dufour
and Soret effects on free convection and mass exchange using a rotating model with a
semi-endless, vertical plate to see more about consistent MHD mass exchange through
porous medium. Electric conducting fluid flows between two indefinitely long
horizontal porous flats in a three-dimensional couette motion. Subsequently Motsa
[14] employed a novel method to study he MHD effects on the fluid flow. Thereafter
Khan [15] examined “Peristaltic transport of a Jeffrey fluid with variable viscosity
through a porous medium in an asymmetric channel. An unsteady MHD convective
flow across an indefinitely porous sliding porous plate was explored in this paper by
Ellahi et al. [16]. Heat and mass transmission across a constantly changing porous
barrier were studied by Umar et al. [17] in the applied magnetic field. MHD viscous
flow across an infinite vertical plate with a continuous mass flux was studied by
Ramesh et al. [18]. Even if the governing equations are difficult, making the correct
assumptions can make them easier to understand. Many scholars have studied the Hall
effect on MHD free and induced mixed convection in a rotating porous channel. In a
non-uniform horizontal circular cylinder, Ramzan et al. [19] looked at convective flow
in practical situations. The incompressible and insulating material according to
Mohamed et al. [20] Under an angled magnetic field, the Williamson fluid moved
peristaltically in a planar channel with heat and mass transfer. Magnetic fields were
applied to porous media in order to study the flow of two stress fluids when the walls
slipped. There was a discussion on theoretical and computational assessments.
Numerical study of magnetic effect on the velocity distribution field in a macro/micro-
scale of a micropolar and viscous fluid in vertical channel was analysed by Tetbirt et
al [21]. Using an elastic and viscous deformation fluid, Ghadikolaei et al. [22] found
that a sliding vertical plate with time-dependent velocity, which was in the vicinity of
the porous medium, produced erratic MHD flow. Magnetohydrodynamic natural
circulation flow in a rotating media is crucial to understand since it has applications in
a variety of domains, including astronomy, geophysics, and fluid engineering. Flow-
field occurs when the density of an incompressible viscous fluid is low or when a
strong magnetic field is applied. Since the Hall current causes second-order flow, it is
a crucial tool for determining the flow properties of problems.

The afore mentioned works omitted thorough commentary on the nature of
velocity in relation to the important quantities which exist in the field equations. In
addition, the relevance of the bounded surface with regard to the uniform suction or
injection was not investigated.

4. Mathematical Model

Slip-flow regime is discussed in this chapter, which describes the flow of a
viscous, incompressible fluid through a vertically porous, infinitely thin flat plate that
is susceptible to shear. The suction velocity distribution is not uniform when
temperature and concentration are periodically changing. [l
—Vg(1+ 24e™7 )]

fluctuating with respect to time is considered. A rectangular Cartesian co-ordinate
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axis is taken in

-~

system with wall lying vertically in x”¥"-plane is employed. The

vertically upward direction along the vertical porous plate and ¥ "-axis is taken normal

to the plate.

T

Solid

Figure: Schematic representation of the problem

Since the plate is considered infinite in the x"-direction, hence all physical quantities

%

will be independent of x". In this setting, y* and t* are the only independent variables
in the physical variables. If viscous dissipation is ignored and density variation is
assumed in the body force component (Boussinesq's approximation), then the

following set of equations may be used to solve the problem.
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These new dimensions are introduced into equations as

follows.
vy rud 4vw*  T'-T! ' -CE gBv(T* —T2)
y="—.t= u=——r.0= = LG =T———=°
1 A AT T:—T: C:—Ck VD*E
o 9BU(CL—C) [ mC,_wpC, v KW RL
Vo? ’ k ko D’ p? v

All physical variables are defined in nomenclature where (*) indicates the
dimensional quantities. The subscript (= denotes the free stream condition. Then

equations (1) to (3) reduce to the following non-dimensional form:

1 Au b e o, O 684G C+afu u )
_—— — ] =A™ ) — = T [ N

4 at ! 3y av? k

EE_ ¢nﬂantiag ;a_z,q

= (1 + 247 b e (6)

In the dimensionless version, the problem's boundary conditions are as follows:

u=h{§—;‘_),e= 1+se™ gty=0 (7)
u—=0, -0, as y —ao
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5. Method of Solution:

Assuming the small amplitude oscillations ( £ << 1), we can represent the velocity u,

temperature & and concentration C near the plate as follows:

u(y,t) = uy(y)e™™

A1) = B, ()et

(8)

9)

Substituting (8) to (9) in (5) to (6), equating the coefficients of non-harmonic terms

and neglecting of & on both sides

4

. : A iw :
Ug+ Uy — |[— | —)u = —Gr8, — GcC, — Au
oF U~ g 1)k ’ 0 ¢ (10)
. P .
8, + Pré, Ld’" 6, = —AB,Pr (11)
Together, these boundary conditions boil down to:
I':h
ug=0 22 —0 aty=0 ,8,=12%—-0 atv=0 (12)
ay av
Where y-differentiation is denoted by primes. After plugging in the boundary
conditions (12), we may solve equations (10) and (11), yielding:
i Gré, + Gely
J»-L_',l?sz_'-'a'r__-'”l"\ +Cg€ =¥ B — - -
e ! (3, iwn
R4 (13)
B (5) = c5e™=Y + 5,8™? (14)
Where
i ||-' I-"; E — — |;-'-| 1 oan |J.i-'£ E—u
' —~1+A}+*J ~1+A}5+4~K+4} (1+4) *J&.ﬂﬁ.qm,-rr m,  GrigtGec,
my = U 61 T [E A
2 * 2 TPy — 1Ty = +—}
o
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6. Results :

1. The impact of the Prandtl number on the velocity profiles for Gr =18 and Gr =24
are shown in Figures 1 and 2, respectively. In all of these examples, the velocity drops
down noticeably as the Prandtl number rises. Fluid motion is also shown to be forward
after a brief period of backward flow close to the boundary layer.

45 ‘ ‘
——Pr=300 | |goqg r

4| —*=Pr=6.00

——Pr=9.00

L|—+Pr=1200

VELOCITY

Figure-1: Variation of Velocity profiles w.r.t Prandtl number for Gr = 18
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—*—Pr=3.00 Gr=24
——Pr=6.00
5 |—8—Pr=9.00 ¥

—+—Pr=12.00

VELOCITY

] 041 02 03 04 05 06 07 08 09 1

Figure-2: Nature of Velocity profiles for Gr = 24

2. Figures 3, 4, and 5 depict three different velocity patterns for a given Prandtl
number. The velocity of the fluid is found to grow according to the Grashoff
number. In this situation, too, there is a brief period of reverse motion followed
by forward movement.

5 T T T T T
—a—Gr=6.00 Pr=3

——Gr=12.00
—+#—Gr =18.00
—6—Gr=24.00
——Gr=30.00

s

VELOCITY
o

Figure-3: Influence of Grashoff number on Velocity profiles for Pr =3
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| |——6ar=3000

VELOCITY

Figure-4: Variation of Velocity profiles w.r.t Grashoff number for Pr = 6

8 T T

L——Gr=12.00 r
——Gr=18.00
—8—Gr=24.00
67 ——06r=3000

——Gr=600 | |pr=12

—

VELOCITY

Figure-5: Effect of Grashoff number on Velocity profiles for Pr = 12
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3. Figure 6 depicts the influence of porosity when the Prandtl number is held
constant. The velocity seems to be growing as the pore size grows.

VELOCITY

Figure-6: Variation of Velocity profiles w.r.t Porosity for Pr = 8

4. The results of varying the Prandtl number are shown in the velocity profiles in
Figures 7, 8, and 9 for k =0.06, k =0.12, and k =0.24. In every case, it has been
shown that the velocity rises along with the pore size. Here, we have a
predominance of reverse flow, followed by forward motion due to the
predominance of fluid velocity.

12 T T
——Pr=100 |k;g,gﬁ b
——Pr=2.00

——Pr=3.00
——Pr=4.0

VELOCITY

Figure-7: Nature of Velocity profiles for k = 0.06
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VELOCITY

Figure-8: Effect of Prandtl number on Velocity profiles for k = 0.12
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Figure-9: Influence of Prandtl number on Velocity profiles for k = 0.24
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5. Figures 10 and 11 illustrate the relationship between the Prandtl number and
the flow rate for a constant pore size. An increasing rate of flow is seen to
correspond to an increasing Prandtl number.

016 T
—a—Pr=1.00| [} 4
——Pr=2.00
01 -|—#—Pr=3.00 B
——Pr=4.00
——Pr=5.00

006

FLOW RATE
k>

01 o B o

016

02

Figure-10: Nature of Flow rate w.r.t Prandtl number for k = 1

0.4 I T
—&—Pr=1.00| |k=25
——Pr=2.00
01 Ll——Pr=300 ]
—o—Pr=4.0 , ¥
——Pr=5.00 0

006
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215F - / o : #
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Figure-11: Variation of Flow rate w.r.t Prandtl number for k = 2.5

6. .Figures 12 and 13 show how the flow rate changes when the porosity of the fluid
bed is altered while the Prandtl number remains constant. The flow rate increases with
increasing porosity, as seen by these many instances. The Prandtl number is highly
correlated with the velocity of a fluid.

-0.05 T T

—+—k=0.09| |Ppr=1
—o—k=0.12

005 ‘ |

——k=00| Pr=3 |

FLOW RATE

0 01 02 03 04 05 06 07 08 09 1

Figure-13: Effect of Porosity on Flow rate for Pr =3
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7.Conclusions:

When the Grashoff parameter is held constant the velocity drops down noticeably as
the Prandtl number rises. Fluid motion is also shown to be forward after a brief period
of backward flow close to the boundary layer. Subsequently, for a given Prandtl
number the velocity of the fluid is found to grow according to the Grashoff number.
For a brief period of reverse motion followed by forward movement. Also, the
velocity seems to be growing as the pore size grows. An increasing rate of flow is
seen to correspond to an increasing Prandtl number. Also, the flow rate increases with
increasing porosity, as seen by these many instances. The Prandtl number is highly
correlated with the velocity of a fluid.
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