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Abstract-The human voice can be characterized by several attributes such as pitch, timbre,
loudness, and vocal tone. It has often been observed that humans express their emotions by
varying different vocal attributes during speech generation. This paper presents an algorithmic
approach for detection of human emotions with the help speech .The prime objective of this
paper isto recognize emotionsin speech and classify them in 6 emotion output classes namely
angry, fear, disgust, happy, sad and neutral. The proposed approach is based upon the Mel
Frequency Cepstral coefficients (MFCC) uses Crema-D database of emotional speech. Data
Augmention is perfomed on input data audio file,such as Noise, High Speed, Low Speed etc. are
added, thus more the varied data is available to the model better the model understands. Feature
extraction is done using MFCC and then the extracted features are Normalized(for Independent
Variable), Label Encoding(for Dependent Variable(for SVM,RF)),One Hot Encoding(for
Dependent Variable(for CNN))is done. After thisthe datasetis divided into Train, Test and given
to different models such as Convolutional Neural Network(CNN),Support Vector
Machine(SVM), Random Forest(RF) for Emotion prediction. We report accuracy, f-score,
precision and recall for the different experiment settings we evaluated our models in.
Convolutional Neural Network(CNN) was found to have the highest accuracy and predicted
correct emotion 88.21%ofthe time. Hence, deduction of human emotionsthrough speech analysis
has a practical plausibility and could potentially be beneficial for improving human
conversational and persuasion skills.

LINTRODUCTION

The human voice is extremely adaptable and conveys a huge number of feelings. Feeling in
discourse conveys additional understanding about human activities. Human discourse passes on
data and setting through discourse, tone, pitch and some such qualities of the human vocal
framework. As humanmachine cooperations advance, there is a need to brace the results of such
communications by preparing the PC also machine communicates with the capacity to perceive
the feeling of the speaker. Feelings assume an essential part in human correspondence. To
broaden its job towards the human-machine cooperation, itis attractive for the PCs to have a few
inherent capacities for perceiving the unique passionate conditions of the client [2,5]. Today, a lot
of assets and endeavors are being placed into the improvement of man-made reasoning, and
savvy machines, allfor theprimary reason for improving on human existence. Research studies
have given proof that human feelings impact the dynamic interaction partially [1-4]. On the off
chance that the machine can perceive the hidden feeling in human discourse, it will bring about
both valuable reaction also correspondence. To convey effectivelywith people,the frameworks
need to comprehend the feelings in speech. Therefore, there is a need to foster machines that can
perceive the paralinguistic data like feeling to have powerful clear correspondence like people.
One significant information in paralinguistic data is Emotion,which is conveyed along with
discourse. A great deal of Al calculations have been created and tried to group these feelings
conveyed by discourse. The mean to foster machines to decipher paralinguistic information,
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similar to feeling, helps in human-machine cooperation and it assists with making the connection
more clear and normal. In this concentrate on various characterization models, for example,
CNN,SVM,RF are utilized to predictin discourse sample.The MFCC is utilized for the
component extraction .To prepare the model CREMA - D dataset was utilized alongside Data
Augmention.

II. RELATEDWORKS

The task of speaking recognition is split into numerous subtasks in traditional ASR systems
(Fig.1-conventional approach), each of them optimized individually. In [12, 9], an end-to-end
strategy for acoustic modeling was presented, which includes both the characteristics and the
classifier. A feature-learning phase consisting of multiple layers of convolution and a
classification phase consisting of fully connected (FC) layers (also referred to as the multi layer
perceptron (MLP)) and an output layer is the basis of the CNN-based end-to-end acoustic
modeling approach as shown in the figure 1.
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Fig. 1: ASR system flow illustrating the conventional and proposed methods.

The hyper parameters of the system include: (i) the window sizeof the speech input (Wseq), (ii)
the number of convolution layers N,(iii) for each convolution layer i € f{1..N}, kernel width
kWi;,kernel shift dW;, number of filters nf; and maxpooling size mpiand (iv) the number of hidden
layers in the MLP.All these hyperparameters were identified via cross validation in the original
paper. This technique also influences how quickly the input talk is processed. In particular, the
first kernel layer width of the convolution layer (i.e. kW) and the kernel shift (i.e. dW;) are
respectively the frame size and frame shift that work on the signal. Figure 2 shows the
processing of the first layer of convolution. Note that the frame rate of the system is determined
by the shiftof input speech window of size wsq, which was fixed to 10 ms, asdone
conventionally.
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Fig. 2. lllustration of first convolution layer processing.

In [9] the first convolution modelling of the "sub-segment," i.e. a 2ms signal that is smaller than
one pitch, was identified. After analysing the filters with two distinct approaches, spectral
dictionary based analysis[12] and back propogation-based analysis[13], the CNN learned to
model forming frequency information for post-probability assessment of the phone.In addition,
this method has been proven to provide equivalent performance or better than the traditional
cepstral functional system with fewer parameters.This study will take use of these two
characteristics, namely the automated functional learning and the less parameters of systems, to
enhance children's ASR systems' performance.

III. CONFIGURATION SETTING
This section discusses the databases and protocols first and then the created systems.
Datasets

For children's speech experiments, we utilised PF-STAR [14] and for adult speech WSJCAM
[15]. Both data sets have utterances captured using two microphones in British English. PESTAR
is a big vocabulary dataset containing 140% of the speakers. It comprises 158 children aged
between the ages of 4 and 14 years old. WSJICAMO. For PF-STAR ASR we utilised BEEP [16]
lexicon. We have utilised the standard BEEP lexicon protocol for WSJCAMO, supplemented
with CMU dictionary pronunciations for invisible words.

Data from both the recorded channels - head mounted microphones (denoted channel A) and
microphones from far-field (denoted channel B) - were utilised to train models for tests with PF-
STAR, since this was partly possible for overcoming data shortages. The evaluation/adaptation
data of PF-STAR is used as a cross-validation set for neural network training. We provide results
independently on the A and B channels of test data.

For experimentation, standard WSJCAMO training (train), development (dev) and test sets
were employed. In decoding of WSJICAMO utterances, Standard 20k trigram LMs of WSJ corpus
have been utilised.The PF-STAR language model has been developed as follows: one LM is
from the Witten-Bell-Smoothing training set and another one from Witten-Bell Smoothing with
standard MGB-3 text [17]. In order to remove the lower probabilities with 108 as a threshold, the
LMs of the two have been interpolated linearly by weights chosen based on their concerns in the
cross-validation set PF-STAR (explained above).

GMM-HMM systems

To train all GMM-HMM systems was Kaldi's toolkit[18] for usage.We have monophonous,
triphonic and LDA+MLLT, as well as LDA+MLLT+MLLR+SAT, using conventional training
system procedures. The sheet nodes were limited to up to 2,500 nodes and 15,000 Gaussians for
context-dependent clustering in all systems. Then, SGMM systems with 2500 leaf nodes, 9,000
substates and 400 mixes per state were trained.
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Table 1. CNN architectures. N : number of filters, kW: kernelwidth, dW: kernel shift, mp: max-
pooling.

e Conv

Model | Laver ny KW AW mp
e 1 8O 30 10 3
0 | a5 @ 7 ¢ |3
e 1 200 30 5 4
CON oad |08 7 1 | 2
1 200 30 5 4
2 160 9 | 2
CNN5 3 160 8 | 2
4 o 7 | 2
5 100 6 | 2

DNN-HMM systems

Keras[19] was used to train all neural networks using Tensorflow [20] backend. The feature
utilised was 429-size MFCC 13-size CMVN with 11-screen splicing and associated coefficients.
The DNNs, referred to as DNN1 and DNN3, consisted of 1 or 3 hidden layers, each with 1024
nodes, followed by a softmax output layer with activation with a rectified linear unit (ReLU).
Monophone DNNs were intended for single-phone states, whereas SGMM clusters were
intended for the triphone systems.The systems were trained using the alignments from the
relevant systems. The Glorot uniform distribution technique was used to initialise the DNN
parameters, default in Keras. Training took place on a stochastic gradient descent with a cross-
entropical loss, where everything except the last layer dropped by 20 percent. When cross-
validation loss stopped decreasing, the learning rate was half in the 10! to 10" range.Scaled up
by priors (computed from goals used for training) and used to decode or forcibly align neural
networks in Kaldi.The HMM state transition probability was derived from the GMM-HMM
system they were learned from during decoding. During decoding The DNN training was
followed by an alignment procedure utilising the DNN-HMM system, as monophone system
alignments were poor. Then the DNNs were randomly re-exercised. It's been repeated twice.
CNN-HMM systems

Keras-Tensorflow was used to train the CNNs. Raw voice signals were shown in 250ms
chunks with a 10ms shift. Each segment was removed mean (by its scalar average) and
normalised before the CNN was fed. Table 1 shows the architectures of the CNN. Each CNN
contains a single completely connected hidden 1024 node layer, followed by a softmax output
FC layer. A 20% dropout was applied to the concealed FC layer. For the training of CNNs were
utilised the central labels of the segment, based on the training alignments. The training
processes for the DNNs were identical.

IV.RESULTS AND DISCUSSION

On kid speech test set (Channels A and B), Table 2 displays word error rates (WER) by using
models trained in speech and additional speech by the adult. We note that CNN systems
regularly perform best or better than their counterparts GMM/HMM and DNN/HMM. The
SGMM systems also profit from data shortages and decoding of multipasses to produce
competent results. It must be noted that 11.99% WER is the best-reported PF-STAR corpus [21,
22], to the best of our knowledge.The effect of integrating kid data into adult ASR on WER is
seen in Table 3. We see that it lowers performance by adding child voice data.

PAGE NO: 27



Shagi/ Steps Journal (2412-9410)|| Volume 27 Issue 3 2024 || http://shagisteps.science

Table 2. Comparison of WER on children test data with childrenmodels and children+adult
models.

Model rained on — | Children data | Added adult data
Children test set — A B A B
GMM 17.84 1927 | 18.43 20.63
DNN1 1567 1663 | 15.88 17.69
DNN3 1584 1721 | 15.62 17.60

mone  onN3 | 1509 1563 | 1512 1672
CNN4 | 1621 1613 | 1568 1690

CNNS | 17.35 1700 | 1582 1737

SGMM | 1308 1464 | 1238 1353

DNN| 465 1552 | 1477 1628

G DNN3 | 1554 1634 | 1437 1641

CNN3 13.25 13.87 | 11.99 14.42
CNN4 1409 1440 | 12,49 14.40
CNN5 1343 1421 | 12.24 13.77

Table 3. Comparison of WER on adult test data with adult models and adult+children models,
showing the effect of adding children data on adult speech recognition.

Model trained on — Adult data Added children data
Adult test set — dev test dev test
GMM 2828 2827 | 2884 2004
DNNI1 1560 1569 | 18.27 18.01
P D]‘\_I]'*!?\ 13.12 1318 | 14.63 14.37
CNN3 149 14.12 | 16.91 16.18
CNN4 1399 1368 | 1574 15.04
CNN5 1432 1380 | 16.14 1543
SGMM 0.10 044 Q32 0.56
DNNI1 1098 1064 | 11.53 11.80
i DNN3 0.66 029 10.30 10.44
CNN3 10.83 1024 | 12.09 11.44
CNN4 1031 970 | 11.51 11.08
CNN5 0.03 9.53 10.85 10.55

In [12], it was proposed to comprehend the information represented on the first convolution layer
of the spectral dictionary. The technique was used for understanding the spectral information
modelled on the CNNs in other research, such as [23] and [24]. The spectrum reaction of the
filters to the input language is determined in this way:

(1) s¢was taken as the input speech segment. For the sake of simplicity,a window size of 30
ms similar to the one used in standardshort term processing is used in our analysis.

(2) Successive windows of kW samples (30 samples for all models)interspaced by dW
samples (10 samples for CNN3, 5 samplesfor CNN4 and CNN5 models) are taken
froms¢

(3) For each of these successive window signals (s¢), the outputs ofthe filters y: to the input
speech signal S = S-(kW-1)/2....S¢+ (kW-1)/2 are estimated as

1=+ (kW —1)/2

yt[in] F— Z fm ig]'5t+F {]}

I=—(EW—-1)/2
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where fn denotes the m™ filter in first convolution layer andy{m] denotes the output of the m™

filter at time frame t.
The frequency response S; of the input signal s; is estimated as

M

Se=| )" t[m].Ful, (2)

m—1

Based on the confusion matrix in [25], the subset of telephones and speakers were chosen. The
30-ms-Frame from the steady-state area of/and/of the boy speaker displays spectral response in
Figure 3 (b23). The formant values are often consistent with the range in the data set. In various

vowels and speakers we saw comparable tendencies.
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Fig. 3. Average filter response for a speech segment /er/ from CNN3trained on children speech

V. FUTURE SCOPE AND CONCLUSION

This article compares the traditional cepstral ASR methodology with a CNN-based end-to-
end acoustic modelling technique to learn the key characteristics simultaneously and the raw
language telephone classification for children to learn the language. Our PF-STAR corpus
investigations have shown that CNN end-to-end acoustic modelling produces superior systems
than those that have conventional characteristics such as MFCCs.Our tests have shown shown
the system may be further improved by increasing child data with adult voice. An examination of
the trained CNNs has shown that CNNs have learnt to represent formational information
invariant in children's and adult speech acoustic differences.
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