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Abstract: The amount of heat convected 

from the fin surfaces has been determined 

by solving the general differential equation 

describing heat dissipation from the infinite 

fin via the calculus approach. Heat transfers 

by desirable quality of temperature gradient 

and the modes which transfer heat from one 

part of the medium to another are 

conduction, convection, and radiation. This 

paper is presenting the use of a Elzaki 

Transform for the analysis of uniform 

infinite fin by solving the general form of 

energy equation describing the heat 

dissipation from the surface of the medium 

and obtaining the distribution of temperature 

and hence the rate of heat convected into the 

surroundings from an infinite uniform fin. 
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negative sign indicates that the heat is 

transferring in the direction of decreasing 

temperature. Generally, the temperature 

distribution and hence the rate of heat 

convected from the infinite fin surface have 

been determined via the calculus approach 

[1-4]. This paper presents for the analysis of 

uniform infinite fin to obtain the temperature 

distribution and hence the rate of heat 

convected into the surroundings by uniform 

infinite fin. 

 
DEFINITIONS 

 

2.1 Elzaki Transform 

If the function ɦ(y), y ≥ 0 is having an 

exponential order and is a piecewise 

continuous function on any interval, then the 

Elzaki transform of ɦ(y) is given by 

INTRODUCTION 

 
Elzaki Transformation applied in solving 

∞ 

E{ɦ(y)} = ɦ̅(�) = p ∫   e
−

 

0 

 
� 

� ɦ(y)��. 

boundary value problems in most of the 

science and engineering disciplines [1, 2, 3, 

4, 5, 6, 7]. It also comes out to be very 

effective tool to analyze differential 

equations, Simultaneous differential 

equations, Integral equations etc. [7, 8, 9, 

10, 11, 12, 13, 14]. spines are the extended 

surfaces projected from heat-conducting 

surfaces to improve the heat dissipation into 

the surroundings [1-3]. Fourier’s law 

expressed as H = −�� 
�� 

, is the basic law 
�� 

of conduction or dissipation of heat, where � 
is the thermal conductivity of the medium, 

� is the area of the cross-section of the 

medium, H is the rate of heat dissipated, 
�� is  the  temperature  gradient  and  the 
�� 

The Elzaki Transform [1, 2, 3] of some of 

the functions are given by 

• � {��} = �! ��+2 , wℎe e � = 
0,1,2, .. 

• � {e"�} =   
�2     

, 
1−"� 

• � {#i�"�} = 
"�3 

, 
1+"2�2 

• � {&o#"�} = 
"�2 

, 
1+"2�2 

• � {#i�ℎ"�} = 
"�3 

, 
1−"2�2 

• � {&o#ℎ"�} = 
"�2 

. 
1−"2�2 

2.2 Inverse Elzaki Transform 

The Inverse Elzaki Transform of some of 

the functions are given by 
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• E-1{��} = �
�−2

 
(�−2)! 

, � = 2, 3, 4 … 
the temperature of the surroundings of the infinite fin 

and is kept constant. 

• E-1{ �2 
} = e"� 

1 
For convenience, let ( )2 = ,……. (b) 

1� 
1−"� 

• E-1{ �
3 

1+"2�2 

• E-1{ �
2 

1+"2�2 

• E-1{ �
3 

1−"2�2 

• E-1{ �
2 

1−"2�2 

}= 1 sin "� 
" 

} =1 cos "� 
" 

}= 1 sin ℎ"� 
" 

} =1 cos ℎ"� 
" 

And �(�) − 0# = 1(�) … … … (&) known as the 

excess temperature at the length ‘y’ of the infinite fin. 
Then equation (4) can be rewritten as 

1′′(�) - ,2 1(�) = 0 ............... (d) 

Equations (a) and (d) are the general form of energy 

equations for one-dimensional heat dissipation from 

the surface of the infinite fin. In equation (b), , is a 

constant provided that ( is constant over the entire 

surface the infinite fin and � is constant within the 

range of temperature considered. 

2.3 Elzaki Transform of Derivatives 

The Elzaki Transform [1, 2, 3] of some of 

the Derivatives of h(y) are given by 

• �{ɦ′(�)} = 
1 

ɦ̅(�) − p ɦ(0), 
� 

• ′′(   ) 1   ̅ (   ) 
 

 

The necessary initial conditions are [e, f] 

(i) �(0) = T. In terms of excess 

temperature, at y = 0, � − 0# = T- 0# or 

1(0) = 10… (e) 

(ii) �(∞) = 0# .In terms of excess 
temperature, at y = ∞, 1(∞) = 0 

Taking Elzaki Transform of equation (d), we get 
 1  1̅(q) – 1(0) -61′(0)- ,21̅(q) = 0... (f) 

�{ɦ   � } = ɦ(�) − ɦ 0 − 
�2 

pɦ′(0), 
"�� #o o�. 

FORMULATION 

62 

Applying boundary condition:  (0) =  0, equation (f) 

becomes 
1  1̅(q) – 1   − 61′(0)- ,21(q) = 0 

6 

Or 
1  1̅(q) −  ,21̅(q) = 61′(0) +  1  ….. (g) 

 

62 0 

The differential equation which describes the heat 
dissipated from a uniform infinite fin is given by 

In this equation, 1′(0)is some constant. 

Let us substitute 1′(0) = 8, 
Equation (g) becomes 

 
1  1̅(q) −  ,2 ̅(q) = 68 + 1 

 

62 

Or 

1̅(q) =  6
38 

(1−62 ,2) 

 
 

+  
62&0 

(1−62 ,2) 

0 
 

 
……. (h) 

Taking inverse Elzaki Transform of above equation, 

we get 
1(y)= 8 #i�ℎ,� +  

 

cos ℎ,� 
, 0 

Or 
,� −,� 

1(y)= 8 [ e,� −  e−,�] +1  [ 
e     + e 

]… (i) 
  

2, o 2 

Determination of the constant;: 

Applying initial condition:  (∞) = 0, we can write 

(Ҏ 

8 

2, 
Or 

[ e,(∞) − e−,(∞)] + 1o [
 e

,(∞) + e−,(∞) 

2 
] = 0 

0′′(�) - [�(�) − 0 ] = 0 ……… (a), where Let us 
1� 

consider that the one end of the fin is connected to a 
heat source at y = 0 and the other end at y = ∞ is free 

for losing heat into the surroundings. The source of 

8 
2, 
Or 

 

[ e<(∞) − 0] + 1o [ 
e,(∞) + 0 

2 

 
] = 0 

heat is maintained at fixed temperature ‘T’ and 0 is  
  

[ 
8 

+ 
1o

] e,(∞) = 0 
# 2, 2 

As e,(∞) ≠ 0, therefore, 
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8 1o 
[ + ] = 0 
2, 2 

Or 

8 = −,1o ................ (j) 

Put the value of 8 from equation (j) in equation (i), 
we get 

into the environs can be better by increasing the 

surface area of the infinite fin. 
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