
 

 

 

 

CHARACTERIZATION OF BOUNDED DISTRIBUTIVE 

LATTICES IN A Г – SEMIGROUP 

Dr. Jyothi. G, Dr. Dhanalakshmi. M, K. Bhanu Priya 

 
Department of Mathematics, Sri Durga Malleswara Siddhartha Mahila Kalasala, 

Vijayawada, A.P, India. 

 

 

 

 

ABSTRACT: In this paper, we discussed to characterize some results on lattices of Γ – 

semigroup . Since a complemented  element  plays  an  important  role  in  the 
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1. INTRODUCTION : In 1964, N. Nobusawa  introduced  the  notion  of a Γ – 

ring.  W. E Barnes weakned slightly the  conditions in  the  definition of  Γ – ring 

in the sense of  Nobusawa.  Many  fundamentals  results  in  ring  theory  have 

been extended to Γ – ring by different authors obtaining various authors 

generalization analogous to corresponding parts in  ring  theory.  In 1981, M. K 

sen and later in  1986  sen  and  saha in  introduced the  concept of  Γ –semigroup 

as generalization of semigroup and ternary  semigroup  many  classical 

notations of semigroup  have  extended  to  Γ –semigroup. From  an  algebraic 

point of view, semigroups provide the most natural common generalization of 
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the groups and most of the  techniques used in  analysing semigroups are taken 

from ring theory, semi rings and  group theory.  In this  paper, the  efforts are 

made to characterize some results on lattice of Γ –semigroup. Furthermore, a 

completed element plays an  important  role  in  the  study  of lattices.  So,  we 

give characterization of some results on lattices in Γ –semigroup. 

2. PRELIMINARIES: 

 

DEFINITION 2. 1: Let  S and  Γ be two  additive  commutative  semigroups. 

Then S is called a Γ – semigroup if  there  exist  a mapping � × Γ × S → S denoted 

by � 	 
 ∀�, 
 ∈ � & 	 ∈ Γ satisfying the following conditions. 

(i) � 	 (
 + �) = (� 	 
) + (� 	 �) 

 

(ii) (
 + �) 	 � = (
 	 �) + (� 	 �) 

 

(iii) � (	 + �) � = (� 	 �) + (� � �) 

 

(i�) � 	 (
 � �) = (� 	 
) � � ∀�, 
, � ∈  , 	, � ∈ Γ 

 
DEFINITION 2. 2: A Γ – semigroup S is said to have a zero element if 

 
0 � � = 0 �� 0 ��� � + 0 = � = 0 + � fo� ��� � ∈ ℝ ��� � ∈ Γ. 

 
DEFINITION  2. 3: A   Γ   –semigroup  S   is  said  to  have  identity  element  if 

 
� � 1 = � = 1 � � fo� ��� �, 
 ∈ � ��� � ∈ Γ. 

 

DEFINITION 2. 4: An element � of a Γ –semigroup S is said to be additive 

idempotent if and only  if  � + � = �. If every  element  of S is additive 

idempotent then S is  called  additive  idempotent  Γ –semigroup  . It is  denoted 

by #+(Γ(S)). 

DEFINITION 2. 5: An element � of a Γ –semigroup  S is  said to  be 

multiplicative Γ – idempotent if  there  exists  γ ∈ Γ ∋ x = x γ x. If every  element 

of S is multiplicative Γ – idempotent then S is called  multiplicative  Γ – 

idempotent Γ –semigroup. It is denoted by #×(Γ(S)). 
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DEFINITION 2. 6: A Γ – semigroup S is said to be Γ – idempotent if it is both 

additive idempotent and multiplicative Γ –idempotent. 

NOTE 2.7: We will denote the set of all Γ – idempotent elements of a Γ – 

semigroup S by (Γ(S)) . 

DEFINITION 2. 8: A Γ – semigroup S with identity is simple if and only if 

 
� + 1 = 1 = 1 + � ∀� ∈ ℝ. 

 
DEFINITION 2. 9: A Γ – semigroup S is centreless if and only if 

 
� + 
 = 0 i'(�ie* +ℎ�+ � = 
 = 0. 

 
DEFINITION 2. 10: The centre  of  a Γ –semigroup  S is  a subset  of S 

consisting  of all  elements  � of ℝ   ∋ � � 
 = 
 � � ∀
 ∈ ℝ ��� � ∈ Γ. It   is  denoted 

by -(ℝ). 

DEFINITION 2. 11: Let �, 
 be elements of a Γ – semigroup S, then   is  Γ – interior 


 denoted by 

�∇
 if ��� o��
 if ∃� ∈ ℝ ∋ ��� = ��� = 0 ��� � + 
 = 1 ∀� ∈ Γ . 

 

DEFINITION 2. 12: An element � is complemented if and only if �∇�. That is, 

 

∃
 ∈ ℝ ∋ ��
 = 
�� = 0 ��� � + 
 = 1 ∀� ∈ Γ . This element 
 of S is the 

complement of � is S. 

We will denote complement of � 0
 �⊥. Clearly if  ⊥ is complemented then so 

is �⊥ ��� �⊥⊥ = �. 

LEMMA 2. 13: Let S be a Γ -semigroup. Then 

(i) i* *i'(�e ⇔ � = � + ��
 ∀�, 
 ∈ � & � ∈ Γ (ii)� 

i* *i'(�e ⇔ � = � + 
�� ∀�, 
 ∈∈ � & � ∈ Γ 

(iii)� i* *i'(�e ⇔ ��
 = ��
 + (���)
∀�, 
, � ∈ � & �, � ∈ Γ 

 
DEFINITION 2. 14: Let � ��� 0 be two elements in partially ordered set 

 

(3, ≤).An element ‘c’ is said to be an upper bound of � ��� 0. If � ≤ 5 ��� 
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0 ≤ 5, and an  element ‘c’  is  said  to  be a least  upper  bound  of  � ��� 0 if  c is 

an upper bound of � ��� 0 and there is no other upper bound of 

� �* � ��� 0 *65ℎ +ℎ�+ � ≤ 5. Similarly, an  element  c is  said  to  be  a greatest 

lower bound  of  � ��� 0 if  c is  a lower  bound  of � ��� 0 and  if  there  is  no 

other lower bound � of � ��� 0 *65ℎ +ℎ�+ 5 ≤ �. 

REMARK 2. 15: A lattice is a partially  ordered  set  in  which  every  two 

elements have a unique least upper bound and a unique greatest lower bound. 

Let  (3, ≤) be  a   lattice.  We define  an algebraic  system  (3,7,8) wℎe�e 7 ��� 8 

are two binary  operations  on A such  that  for  � ��� 0 i� 3, � 7 0 is equal  to  the 

g. l. b of � ��� 0. 

DEFINITION 2. 16: A lattice is said to be distributive lattice if the meet (⋀) 

operation distributes over the join(⋁) operation  and  the  join  operation 

distributes over the meet operation. That is, for any �, 0 ��� 5 

�⋀(0⋁5) = (�⋀0)⋁(�⋀5) ��� 

 

�⋁(0⋀5) = (�⋁0)⋀(�⋁5) 

 
DEFINITION 2. 17 : An element  � in  a lattics  (3, ≤) is called  a universal 

lower bound if  for  every  element  0 ∈ 3, we have  � ≤ 0. An element   in  a lattice 

(3, ≤) is  called a universal upper bound if  for  every element 0 ∈ 3, we have 0 ≤ 

�. 

We shall use ‘0’ to denote the  universal  lower  bound  and  ‘1’  to 

denote the universal upper bound of a lattice (if such bounds exist) 

 

 
DEFINITION 2. 18: Let (3, ≤) be a lattice  with  universal  lower  bound  and 

upper bounds ‘0 ’ and ‘1’  respectively. For  an  element � i� 3, an  element 0 is 

said to be a complement of � if � 7 0 = 1 ��� � 8 0 = 0 
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DEFINITION 2. 19: A lattice is said to be a complemented lattice if every 

element in the lattice has a complement. 

NOTE 2. 20: A complemented lattice must have universal lower and upper 

bounds. 

DEFINITION 2. 21: A complemented and distributive lattice is called 

Boolean lattice. 

A Boolean lattice (3, ≤) defines an algebraic  system  (3,7,8, ⊥) is 

known as Boolean algebra, Where 7, 8 ��� ⊥ are the join, meet and the 

complementation operations respectively.  

DEFINITION 2. 22: A Γ -semigroup S is  lattice  ordered if  and  only  if it also 

has the structure of a lattice such that ∀ �, 
 ∈ � ��� � ∈ Γ 

(i) � + 
 = � 7 
 

 

(ii)� � 
 = � 8 
 where partial order is one induced by the lattice 

structure on S. 

THEOREM 2. 23: Let S be a Γ -semigroup. Then S is a bounded distributive 

lattice having unique minimal element 0 and unique maximal element 1 if and 

only if S is commutative, Γ -idempotent and simple Γ -semigroup. 

Proof: Let  S be  a bounded distributive lattice  having  unique minimal  element 

0 and unique maximal element 1 

Then S becomes a commutative, Γ -idempotent and simple Γ -semigroup by 

defining � + 
 = � 7 
 ��� � � 
 = � 8 
 ∀�, 
 ∈ ℝ 

Conversely, let S be a commutative, Γ -idempotent and simple Γ -semigroup. 

 

Then define a relation ≤ on S by � ≤ 
 if � + 
 = 
 ��� ��
 = � 

(i) ≤ � �* � + � = � & ��
 = � 

(ii)#f � ≤ 
 ��� 
 ≤ � +ℎe� � + 
 = 
, 
 + � = � ��� ��
 = �, 
�� = 
. <ℎ6* � = 
. 
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(iii)#f � ≤ 
 ��� 
 ≤ � +ℎe� � + 
 = 
, 
 + � = � ��� ��
 = �, 
�� = 
. 

Thus � + � = � + (
 + �) 

= (� + 
) + � 

 
= 
 + � = � 

 

And ��� = (��
)� 

 

= ��(
��) 

 
= ��
 = � 

 
This implies that � ≤ � 

 
Hence (�, ≤) is a partially ordered set. Define the operation 7 ��� 8 on  S by 

 
� + 
 = � 7 
 ��� ��
 = � 8 
 ∀�, 
 ∈ �, � ∈ Γ 

 
Then it is easy to see that S is a bounded distributive lattice having unique 

minimal element 0 and unique maximal element 1. 

 

 

3. CHARACTERIZATION OF  BOUNDED DISTRIBUTIVE LATTICES. 

 

PROPOSITION 3. 1: Let S be a Γ – semigroup.  S is  bounded  distributive 

lattice having unique minimal element 0 and unique maximal element 1 if and 

only if it is commutative, Γ – idempotent, Γ –semiring and 

� 8 (� 7 
) = � = � 7 (� 8 
)∀�, 
 ∈ � 

 
Proof: Let  S be  a bounded distributive lattice  having  unique minimal  element 

0 and unique maximal element 1. 

Let �, 
, � ∈ � 

 
Since � 7 (� 8 
) is the join of � ��� � 8 
 

 
We have � ≤ � 7 (� 8 
) 

 
Again, � ≤ � ��� (� 8 
) ≤ �. we have 

 

� 7 (� 8 
) ≤ � 7 � = � 
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Therefore,  � 7 (� 8 
) = � 

 

By principal of duality, � 8 (� 7 
) = �. 

 
Conversely, suppose that S be a commutative, Γ -idempotent Γ - 

semigroup and � 8 (� 7 
) = � = � 7 (� 8 
)∀�, 
 ∈ �. 

In theorem 2. 23 it is sufficient to show that S is simple. 

 

Putting � = 1 i� � 8 (� 7 
) = � = � 7 (� 8 
) �* � + 
 = � 7  , ��
 = � 8 
. 

We get 1(1 + 
) = 1 ∀
 ∈ ℝ 

That is 1 + 
 = 1 ∀
 ∈ � 

 
Hence, S is simple. 

 
THEOREM 3. 2: Let S be a Γ -semigroup. A commutative Γ-semigroup is  a 

bounded distributive lattice if and only if it is simple multiplicative  Γ - 

idempotent Γ -semigroup. 

Proof: This is a direct proof of lemma 2.13. Proposition 3. 1 and theorem 2. 23 

THEOREM 3. 3: Let S be a simple Γ -semigroup then (#×(Γ(S)), +) is a sub 

monoid of (S, +) and (#×(Γ(S))⋂C(S)) is a bounded distributive lattice. 

Proof: Let �, 
 ∈ #×(Γ(S)) 

 
Then ��� = � ��� 
�
 = 
 

 
Therefore by lemma 2. 13 we have 

 

(� + 
)�(� + 
) = (� + 
)�� + (� + 
)�
 

 
= ��� + 
�� + ��
 + 
�
 

 
= � + 
�� + ��
 + 
 

 
= � + 
. 

 
So, � + 
 ∈ #×(Γ(S)) that is #×(Γ(S)) is closed under addition. 

Since it contains 0. So #×(Γ(S)) is a sub monoid of (S, +). 
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Further, let �, 
 ∈ (�)+ℎe� � + 
 ∈ -(�) 

 
Therefore, � + 
 ∈ #×(Γ(S))⋂C(S). 

Since 0, 1∈ #×(Γ(S))⋂C(S). 

So, #×(Γ(S))⋂C(S) ≠ ∅. 

 
Let �, 
 ∈ #×(Γ(S))⋂C(S) then surely ��
 ∈ #×(Γ(S))⋂C(S) 

 
Thus #×(Γ(S))⋂C(S) is sub Γ -semigroup of S which is also simple, 

since � + 1 = 1 ∀� ∈ #×(Γ(S))⋂C(S). 

Now the results follows from the theorem 3. 2. 
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