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Abstract: In this paper, a system of n singularly perturbed robin type initial value
problems with discontinuous source terms is considered. The derivative component of
each equation in the system is multiplied by a same singular perturbation parameter €. A
piecewise uniform Shishkin mesh is constructed and used, in conjunction with a classical
finite difference scheme to form a numerical method for solving this problem. It is proved
that the numerical approximations generated by this method are essentially first order
convergent in the maximum norm at all points of the domain, uniformly with respect to
the singular perturbation parameter. Numerical results are presented in support of the
theory.
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1 Introduction

Consider a system of singularly perturbed robin type initial value problems with dis-
continuous source terms on the unit interval Q = (0, 1], assume a single discontinuity
in the source term at a point d € Q. Let Q— = (0, d) and Q" = (d, 1] and the jump at
din any function is given as [w](d) = w(d+) — w(d—). The corresponding initial value
probles is to find us, Uy, ..., u, € D = C%(Q) N CHQ— U O%), such that

Pu(x) = Eor(x) +A(x)a(x) =f2(x), x€EQ~UQ (1)
with the prescribed initial conditions
8+4(0) =8(0) — etr(0) = @ (2)

where, E = diag(g, ¢, ..., €), ¥(x) = (uix), ua(x), - - -, un(x))", AX) = (@;(x))nxn

and f2(x) = (fi(X))nxa.

The problem (1) and (2) can also be written in the operator form

1% =f?onQ (3)
with
84(0) =@ (4)
1
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where the operators 1, 8 are defined by

D =ED+A, @=/—ED

where / is the identity operator, D = o is the first order differential operator.

Assumption 1 The functions ay;, fi € C'?(Q), i,j = 1(1)n satisfy the following posi-
tivity conditions

(i) ailx)>" laj(x)| for i=1(1)n

iy . Vxeaq (5)

(if) ai(x) <0 forifjandi= 1(1)n:

Assumption 2 The positive number o satisfy the inequality

O<a< min z ai) . (6)
=1t .
x€Q

Assumption 3 The singular perturbation parameters € satisfy 0 <& < 1 is assumed to
be distinct.

The above problem is singularly perturbed in the following sense. The reduced problem
obtained by putting € = 0 in the system (1) is the linear algebraic system

AXW(x) =f?(x), x€Q-UQ (7)
Tau(x)  anlx) o amx)
where A(x) = "anl) - anl) o dnb) ,
ani(x) anma(x) - Qnn(X)

¥(x) = (valx), va(x), -+, valx))T and £2(x) = (falx), fa(x), - - -, falX))T.

The source terms fi(x), f2(x), . . ., fa(x) are sufficiently smooth on Q\{d}. The solu-
tion components uy, Uy, ..., U, of the problem (1) and (2) have overlapping initial layers
at x = 0 and have overlapping interior layers to the right side of point of discontinuity
atx =d.

Theorem 1 Let A(x) satisfy (5) and (6). The problem (1) - (2) has a solution ¥ € D.

Proof. The proof is by construction. Let 9 and -z be the particular solutions of the
differential equations

Eyi(x) + A(x)yi(x) = filx), i=1,2,...,n forallxe Q— (8)
and
Ez{x) + A(X)zi(x) = f{x), i=1,2,...,n, forallxe Q' (9)
2
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"¢ 00 --- 0 Tonlx)  gnkx) - oawlx)
0 € 0 - . =a21(x aa(x I » PN ¢ I
where E = | ., Ax) = ulx) 2(X) nlX) respectively.
000 - ¢ ani(X) an2(x) -+ ann(x)
Consider the function
yAx) + 8 (ui(0) =y (O x),  i=1,2,- -, n, x€EQ (10)

a(x)= z(x)+Bo(x), i=1,2 - -,n x€Q
i i

where <ﬁ is the solution of
)
Eq, + A(x)pi(x) = ©

i=1,2---,n forallxe Q.
Bipi(0) = 21,

Here B; i = 1(1)n is chosen so that &% € D. In Q, 0 < <ﬁ < 1, there can be no internal

maximum or minimum for (ﬁ and hence ¢ <0, i = 1(1)n in Q. Choose the constants
Bi such that

y(d-) =2(d+)a(d-) = a(d+).
For the constants B; to exist, it is required that

[u(O) — yi(O)lei(d—)
p(d+)

Since i(d+) >0 is true, the existence of B and hence # is ensured.
Remark: Throughout this paper, we use C as a generic positive constant vector which
are independent of the perturbation parameters and the discretization parameter N.

£0 fori=1(1)n.

2 Analytical Results

The operator 1 satisfies the following maximum principle.

Lemma 1 Let A(x) satisfy (5) and (6). Suppose that a function 4 € D satisfies 8 4 (0) >
—0,28(x) = 20 forall x € Q— U Q*. Then #(x) = =0 for all x € Q.

Proof. Let ui(pi) = min{ui(x)}, for 1 < i < n. Without loss of generality assume that
xXEQ

ui(p1) < ui(pi), for 2 < i < n. If ui(p1) = 0, then there is nothing to prove. Suppose
that ui(p1) <0, then the proof is by showing that this leads to contradiction. Note that
p1 £ {0}, so eitherp; € Q— U Q* or p1 =d.

Case(i): pp€ Q— U QF,

84(0) =#(0) — &'(0)
< 0, a contradiction

and

3

(2 #)1(p1) = aur (p2) +  awy(pr)ulpy)
j=1

< 0, whichis a contradiction.
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Case (ii): p1=4d,
since ¥ € C(Q) and ui(d) < 0, then there exists a neighbourhood N, = (d — h, d)
such that ui(x) < O for all x € Nh,. Now choose a point x;1 £ d, x1 € N, such

that ui(x1) >d’17((<99'— Ul&yf)ws from the mean value theorem that, for some x, &
N,u((x)=——"——""<0,sincex &N.
h 1 2 d—x 2 h

Thus by similar argument of the first case, it follows that,
ny
( r w)1(x2) =€ur (x2) +  a(x2)ui(xz) <O.
j=1

which is the contradiction.
As an immediate consequence of the above lemma the stability result is established in
the following.

Lemma 2 Let A(x) satisfy (5) and (6). Let 4 be the solution of (1) and (2). Then,

1
[la(x)l1g < max [[8a(0)]], “|} 2 ullo uor
Proof. Define the two functions

. (o), Q
9500 =max | OO talla o L 4 xea

9% (x) =M = #(x)

where M = max{| |68 #(0)| o2 L #||o-uo+}- Using the properties of A(x), it is not hard
to verify that 89%(0) > 20 and 128%(x) = 0 on Q— U Q". It follows from Lemma 1
that §*(x) > 20 on Q. Hence,

()| < max [18e(0)], 7142 ¥l 0 Lor

Lemma 3 Let A(x) satisfy (5) and (6). Let & be the solution of (1), (2). Then, for

eachi, i=1,2,: - -,nand x € Q— U QF, there exists a constant C such that
n ’
lu)l = ¢ | g+ 7 lave
n ’
bl < ce* |l B+ (| P la-var

n )
)] < ce2 13 I+ 17 lg-oar + 1 727 g oo

Proof. From Lemma 2, it is evident that,

)l <1831+ |12 @] -

.
o 0 uQ
Thus,

n >
lu)l < ¢ || ||+ |7 la-var
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Rewrite the differential equation (1), we get
a'(x) = EHf? — Aw)
Hence, |urfx)| < Ce=*(I1@ 1] +1f?llq-uar)
Differentiating (1) once, we get
Ed&m(x) +A(x)or(x) = fr(x) — Ar(x)a(x).
Using the bounds of -u' and &
[ ()| < eI 001+ ce5(11@ 1] + 172 1)+ (@] + 1121

and hence,

lug)| < eI+ 1@ |+ 1121 g-var)

3 Estimates of derivatives

To derive sharper bounds on the derivatives of the solution, the solution is decomposed
into a sum, composed of a regular component ¥and a singular component w. That is,
& =¥+ w. The regular component ¥ is defined as the solution of the following problem:

1v(x)=f7(x), xEQ-UQ
8+(0) =B80(0) (11)
The singular component w is defined as the solution of the following problem
lw(x)="0, xEQ-UQ
Ew(0)=6 (¥ —¥)(0), [w ]d=-Fld). (12)

Theorem 2 Let A(x) satisfy (5) and (6). Then the components v, i = 1(1)n of the

regular component ¥ and its derivatives satisfy the bounds for all x € Q— U Q" and
k=0,1,2,

%8 |q-ya+ < C for k=0, 1
W) <C [wld)) <cC
[yl lq-ugr < Ce—* fori=1(1)n.

Proof. Following the techniques in [], one can arrive at the results

||-y(k)||07UQ+ < C for k= 0, 1
Alsofori=1,2,---,n,

Hvllg-uer < Ce—*
and
[vil(d)| = vi(d+) — vi(d=) < [v(d+)| + [v(d—)| < C

Similarly, |[#71(d)| < C, and hence the proof is completed. Now bounds on the layer
components of - are to be found. Consider the layer functions

Bi{x)=e—%%,  B,{x)=e—ax—d/¢  j=1(1)n.
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Theorem 3 Let A(x) satisfy (5) and (6). Then the components w,, i = 1(1)n of the
regular component w and its derivatives satisfy the bounds for all x € Q— U QF

(
lwilx)| < €B,, (X), x € Q~
CBra(x), x € Q*
e BB (x), xea-
q=i

lwr(x)| < B
g Ce— e B, (x), x€ Q*

n
" ce— 1" B,(x), x€ Q"
lwrr(x)| < g5!
1

3 Ce " By(x), x€ Q'
q:

Proof. We have & =¥ + w and by Lemma 2 | wb (0)| < Cand | wp (d+)| < C. Define the
barrier function

§ =CB(x)®

with C chosen sufficiently large such that § > | wb | at x=0, d+,

n > =
RE=CB,,* ay—a Gy—q -, Gnj_g
j=1 J=1 J=1
>20=|2wy

and it is not hard to see that 8 £(0) = ~0. Using maximum principle (1), we get the re-

n
quired bounds on w . Now to bound first-order derivative of w;, consider ewr+ -~ ayw; =

j=1
0, together with the bound on w. This implies that
(
wi(x)] < Ce—'Bjnlx), x € Q™
i Ce—'Br,(x), xE€ Q"
Now to find the sharper bound consider the system of n — 1 equations
B+ A =,
where E~, A are the matrix obtained by deleting the last row and column from E, A
respectively and the components of “hare hi= —awn, forl <i<n-— 1. Using the

bounds derived earlier and the decomposition of W = % + ¥, into regular and singular

component we get the required result. Now to bound second-order derivatives, differen-
“n
tiate ewj+ a;w; = 0 once and using the estimates of w7, we get the required bounds
j=1
on singular component w and its derivatives.
Lemma 4 Foralli,j such that 1 < i < j < n, there exists a unique point x;; € (0, d)
such that B, (x;;) = e B, (x;;). Also, e B, (d+ x;;) = e 'B, (d+x;j). On
[0, x;;) we have e—'B; (x) > e1B; (x) and on (x;;, d) we have e—lB,_G() <&e1B (x).
Similarly, on (d, d + x;;) we havejele,. (x) > e'B, (x) and on (d + x;;, 1] we have
£'B; (x) < e 'B, (x). !
i J
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For the analysis of the convergence, a more precise decomposition of the components of
the singular component w is required. The next Lemma provides the necessary estimates
of decomposed layer functions.

Theorem 4 The singular component w can be decomposed in this way as follows, for
1<i<n:

wi(x) = Wi q(x)
q=1
where
C _ « _
|W£q(x)| - Ce Bidx), xe€Q wi ()] < Ce "Biix), xeQ
Ce—1B(x), xE Q*F Ce—'B.(x), xE Q*

Proof. Define a function w;; as follows

wi1(x) = wi(x) — Wi q(X)
q=2

and for 1 < g < n, we have

? [(x—xa-14)<1 (K)
, >3 %Wi (Xg—1,q), x € [0, Xg—1,4),
=0 >

wilX) — Wi X, XE Xq— /d/

Wig = /( ) g+l /,r( ) [ q—1,q, )

=2

“ —d—Xg-14 K K
7 k=0 [(Xk—'Xl”W/( )(d"'qul,q); x € (d, d+ Xg—14),
> >
g Wi(x) — wi (x), X € [d+ Xxq—1,4, 1]

r=q+1

Now we establish the bounds on the second derivative.
For x € [Xn—1,n d] U [d + Xp—1n, 1],

=
lewsn (x)| = lewfr(x)] < Ce—*  Biyx) < Ce—1B,, (%)
g=1
For x € [0, Xn—1,n) U (d, d + Xn—1,n),
2 —1
lewin(x)] = |eWr(Xo—1n)| < Ce=' B {xn—1.n) < Ce—'B) ,(Xn—1,n) < Ce B ,(X).
g=1
Now for each 2 > g = n — 1, it follows that
For x € [Xg—1,4 d) U [d + Xg—1,4, 1],
wig (x) = 0.
For x € [0, xq—1,4) U (d, d + xg—1,4],
=
lewsr (X)| = |ew(Xg—1,0)| < Ce=" By (Xg—1,4) < Ce'By (Xg—1,9) < Ce—Big(x).
g=1
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Forx € [x1,2, d) U [d+ x1,, 1],
W,I':rl(x) = O‘

For x € [0, x1,2) U (d, d + x1,2],

n n

|EWflrl(x)I = lewfr(x) — ewi(x)| < Ce—! 1B/ {x) < Ce—1B, {x).
q:

For the bounds on the first derivatives we have the relation

Xg,q+1

lwig (x)] = wir, (t)dt < Ce—1
X X

Xq,q+1

B, (t)dt < Ce—' By, (x).

4 The Shishkin mesh

A piecewise uniform mesh with N mesh-intervals is constructed and mesh points {x}" j=0
are obtained by dividing the interval Q into 2n + 2 sub-intervals as follows.

QO=[0,011U(0,02] " * " (On—1,0n] U (On, dU(d,d+T1] U (d+T, d+T2] U+« - (d+Tp—1, d+T,] U (d+ T, 1].

where 01, 05, ...,0n Ty, Ty, ..., Tn are the transition parameters satisfying

d 1-d
O<oi1<o0<: --<0,,§£ and d<n<n<: --<r,,§T-

The interior points of the mesh are denoted by

N
QN = x,-;15i5N—1 U X,-:—2+1sisN—1 =0—NuQtV

2
_hi+hiq | |
Let hi = x; — x,_; be the i mesh step and h; = 5 clearly Xy = d. Then
N
on the sub-intervals [0, 01] and [d, d + t1] a uniform mesh with 2Wmesh intervals are

placed aRId similarly on (ok, k1], (d+ T, d+Tke1], 1 < k < n—-1, a uniforn/wvmesh

with mmesh intervals and on (o, d] and (d + 1, 1] a uniform mesh of " mesh

intervals are placed.
The 2n transition points between the uniform meshes are defined by

. d & . 1—-d ¢
o,=min —, " InN , T, = min L, InN
a 2 a
andforr=n-1,...,2,1,
O E ’ N, e 7
o =min , InN , T.=min , InN
r r
2 «a 2 «a

This construction leads to a class of 2" piecewise uniform Shishkin meshes.
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5 The Discrete Problem

The Initial Value Problem (1), (2) is discretised using a fitted mesh method composed

8f a classical finite difference operator on a piecewise uniform fitted mesh Q . Then the
fitted mesh method for solving the system (1) and (2) is, fori=1,2,...,n,

(L Nd_) ()_()=ED—tﬁ(x)_+A(X)_U> X)=f2() Jj# ﬁ (13)
i J J J J 2

with
60 (0)=0 (0)—eD*U(0)=@ (14)

and at xy =d, the scheme is given by
2

2N O (xn) = ED—O (xn) + Alxn) O (xn) =f2(xn — 1).

The problem (13), (14) can also be written in the operator form

LN O =f? on Q" with

eNo©0=¢
where LN = ED— + A with
8N =1 —eD'

and D*, D— are the difference operators
p-0)= T O hug )T O Ly N
j g

J
Xj — Xj—1 Xjs1 X

The following discrete results are analogous to those for the continuous case.

Lemma 5 Let A(x) satisfy (5) and (6). Suppose that a mesh function 2(xj) satisfies

82 (xo) = 20 and RN 2 (x) = =0, forall x; € Q" and (D* — D—) 2 (xn) < =0, implies that
2

2(x,~) > =0 for all x; € Q.

Proof. Let x4 be any point at which Z(xq) attains its minimum on QN _ |f 2(xq) =0
then there is nothing to prove. Without loss of generality, Suppose that Zi(xq) <O,

then clearly, x, # 0. If x4 =0, then

6N 2(0)=2(0)—eD*Z(0)

< 0, a contradiction.

’

Therefore, xq # 0. If g # N/2, it is clear that
D_Zl(Xq) S O S D+Z]_(Xq)
and hence if x, € QV, g # N/2, then

(2 N2)ixq) = eD=Z(xq) + a11(Xg)Z1(Xq) + * * * + T1n(Xq)Zn(Xq) < O
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which is a contradiction. Hence, the only possiblity is that x, = xy. Then
2

D—Zi(xn) <0 < D*Zi(xn) < D—Z1(xn).
2 2 2
From the above it is observed that

Zi(xn_4) =Z1(xn) = Z1(xn,4) <O
2 2 2

then, (£ NZ)l(xé_v_l) <0, which is a cotradiction. Hence the result.

Lemma 6 Let A(x) satisfy (5) and (6). /fd be the numerical solution of (1) and (2),
then

10 Wil < max 160 Ol 3 P8~ oo
Proof. Define the two mesh functions
O*(9)=max |I@ND O)l] Z/|Plo-ruaw = O ()
Using the properties of A(x), it is not hard to verify that & N @ *(0) > 20 and LN® * > =0

or)VQN. Applying the discrete maximum principle (Lemma 5) then gives @* > ~0on

Q , and so 1
| @ ()l <max [[8N@ ()], =[If]]
J

—N +N
a Q-NuQ

as required.

6 The Local Truncation Error

From Lemma 6, it is seen that in order to bound the error | | 7 — ||, it suffices to bound
1N(O — ). Notice that, for x; € Q",

2Y(O () —u(x;) = 2V O (x) — 2Va(x))
= E(D_ — D)Q(Xj)
and
(( r — 2N)U)i(xj) = &(D— — D)vi(x;) + e(D— — D)wi(x))
which is the local truncation of the first derivative. Then, by the triangle inequality,
[(2N(O —#))ilx)| < |e(D~ — D)vilx)| + [e(D— — D)wifx;)l.

Analogous to the continuous case, the discrete solution O can be decomposed into v
and W which are defined to be solutions of the following discrete problems

(EN?))=f2(x)on @V, 8NV (0)=8+(0) (15)
and
(VW )(x)="00n Q", 8N W (0)=6w() (16)
10
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where ¥ and w are the solutions of (11) and (12) respectively.
Further, fori=1,2,...,n,

(BN (P —))i(0)| = |(D — D){0)|
(8N (W — w)){0)| = |(D — D")wi{0)|

(2N —)ilx)| = |e(D— — Dvix)| (17)

(2N (W — w))ix)| = |e(D— — D)wilx). (18)

The error at each point x /€ Q" is denoted by O (xJ— # (> ). Then the local truncation
error 2N (O (x;) — #(x;)) has the decomposition

RV(O —u)x) =2N(V —¥)(x) +2V(W — w)lx).

By a Taylor expansion on regular and singular components, we have

d (xj — xj—1)
le —D— v (x)| <ce lv| <cn—? (19)
dx ko J 2 ‘2
and
'CMW/&
le (;—D— wi(x)| < ce max A (20)

[x;xj—1]

wherek=1,2,...,n, j+ 5.
The error in the smooth and singular components are bounded in the following section.

7 Error Analysis

The proof of the theorem on the error estimate is split into two parts. First, a theorem
concerning the error in the smooth component is established. Then the error in the
singular component is established.

Theorem 5 Let A(x) satisfy (5) and (6). Let ¥ denote the smooth component of the
solution of (1), (2) and V denote the smooth component of the solution of the problem
(13), (14). Then

(2P —¥)ilx) < N
Proof. From the expression (19),

(BN (V —#):0)| < Cx —x) max [vir(s)| (21)

SE[xo,x1]
< CN—?
It is not hard to find that

&(D— — D)vi(x;) < Ch; max levir(s)]
s€l;

< Ch;j
< CN—?

as required.

11
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Lemma 7 Let A(x) satisfy (5) and (6). Let w denote the smooth component of the
solution of (1), (2) and W denote the smooth component of the solution of the problem
(13), (14). Then

[(2N(W — w))ix)| < CN—TInN
Proof. For the proof of this theorem, we have to evaluate the error estimates for the
singular components on different subintervals considered as follows:
Case (i): For x; € [0, d) U [d + Ty, 1].

From the expression (20),

(BN (W — w))i(0)| < Ce(xs — xo) max |wr|

[xo0,x1]
< CN—1'InN

Using (20) and bounds on singular components, we have fori=1,2,...,n

=B
(BN —2)w ) fx )| < Ce —"’ﬂ
qg=i
=< ClB, |l x;_1x1 = Bi,(xi—1)
< CN—L.

Similar arguments prove a similar result for the subinterval [d + t,, 1]. Hence, for
X; € [on, d) U [d + T, 1] we have

(2N —2)w )| < N
Case (ii): Forx; € (0, 01] U (d, d + t4].
Using (20) and bounds on singular components yields

(2N —2) w )ix) | < Clx — xi—1) | |ewrs] |

-3
< he Bia(x)
g=1
< CN—'InN.

Case (iii): For x; € (0, 0r+1) U (d+ T, d+ Ts1), Wherel <r<n—1

Using the decomposition in Theorem 4 of singular components and bounds on sin-
gular components gives

R—1

>N 9 « d _ d .
(L —L)w)ix)| = q=1€ P wialx) + € D winlx) . (22)

Consider the first part of (22) and using the bounds on singular components, we obtain

1 d T
3 d__ D Wi,q(Xj) < || EW/EE; | |[x,',1,x,']
_ X _
g=1 q=1
< CB/"71 (X/fl)
< CN—L
12
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Using the bounds on singular components for the second part of (22), we have

h;
d—=D=w (x) < _|lew" ||
dx O I

< CN—'InN.

Case (iv): For x; € {o, d+ 1}, where 1 <r <n—1.

Using the decomposition of the singular components and bounds on singular com-
ponents defined in Theorem 4 gives

SV ood d
(L —L)w)ix)| = q=1€ P wialx) + € D winlx;) . (23)

Consider the first part of (23) for the case i < r, and using the bounds on singular
components, we obtain

™ d LI
3 d_ Wig(x;) < || EW,q | |[X,~,1,Xi]
=1 X =1
q
< CN—.

and if i > r, using the bounds on singular components and the analysis in Case (i), we
have

T od_ o
€ d_ Wi,q(Xj) =< || EWI',q | |[X1711Xi]
=1 X =1
q
< CN—L

For the second part of (23), use bounds on singular components defined in Theorem 4,
to obtain

d—D- w (x) <Ch llewr ||

£ ax in j r in
< CN—1InN.
Now at the point xy = d,
2
(
N lur(9)] h XN<'7<XN ’
(2o —u)) (@l < ch max  |ur(n)| + Cech— max 1UT(O)]  where 7 PR
xnoxn 1 " Xy _pxnl ' Xn_ g <O <Xn
2 2 n 2 n 2 2 2
=
< Ce—'olN—1 Bg(n) + Ce—'N—1  By(9)
=1 qg=1
< Ce—'o1N—' + Ce—*N—1B,(9)
< CN—'InN.

We conclude this section with the following main result which follows by using the error
analysis for the regular and singular components, and the discrete maximum principle.

13
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Theorem 6 Let ¥ be the solution of the continuous problem (1), (2) and O be the
solution of the discrete problem (13), (14). Thus, for N sufficiently large,

(L0 —#))|| < N—'InN
where C is a constant independent of € and N.

Proof. Consider the two mesh functions

CN—1InN(1 +2x) = PN(Udx) — ulx)), J <
CN—InN(d +x) = EN(U(x) — uix)), j >

o

I+

5

Il
N2 NI

where C is suitably chosen sufficiently large constant. Hence forj < %, it is not hard

to verify that (8N 9*);(0) = 20 and

b
(2 N35)i(x;) =CeEN—InN +CN—InN(1+2x)  aip(x) £ 2N (Uilx) — uilx;))
p=1

-3 N

>CN-1In  aplx) = 2N (Uix) — ui(x)
p=1

>CN—1InNa =CN—tInN

>0

and forj > X,

b
(2 N95)i(x;) = CeN—2InN + CN—In N (d + x;) aip(x;) = 2N (Ui(x) — uilx)))
p=1

-3 N

>CN-tIn  aplx) = 2N (Uix) — uix)
p=1

>CN—*InNa =CN—InN

= 0.

And forj=1%

(d+xﬂ2+h+—1—2x%) (1+x%)—(1+xu2—h—)

(2N85)i(xn)=CN—InN —CN—InN
2 h+ h_
—1 (h+_ 1) —1 1
=CN InN—— —CN InN+CN InN

h+
<0.
Thus, for N sufficiently large,
10 —ull <IN

which completes the proof.
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8 Numerical lllustration

The numerical method proposed above is illustrated through an example presented in
this section.

Example 1 Consider the following singularly perturbed robin type initial value problems
with discontinuous source terms

euf (x) + (2 + x)ua(x) — u2(x) —us(x) = filx), x€Q-uUQ*
g0 (X) — u1(x) + dua(x) —us(x) = fo(x), x€Q-UQ

gy’ (x) — ui(x) — uz(x) + (4 + eus(x) = fa(x), x€Q-UQ*

with
6U1(0) = 1/ 6“2(0) = 1/ 6U3(0) = 1/
where
( ( (

filx) = 1 for0<x=<05 fiolx) = 3 for0=x=<05 fa(x) =

1 for05<x<], 0.5 for0.5<x<1,

The sxact solution of the test example is not kngwn. Therefore, we estimate the error

for U by comparing it to the numerical solution U obtained on the mesh X ; that contains

the mesh points of the original and their midpoints. For different values of N and the
arameter €, we compute ~

p p DN I

e =lU—UMX) g

The numerical solution obtained by applying the fitted mesh method (13) and (14) to

the Example is shown in Figure 1. The order of convergence and the error constant are

calculated and are presented in Table 1.

2 for0<x<0.5
1 for05<x<1,

Table 1:

example.

n Number of mesh points N
72 144 288 576
0.100E+01 | 0.190E-01 0.104E-01 0.547E-02 0.280E-02
0.250E+00 | 0.389E-01 0.222E-01 0.117E-01 0.605E-02
0.625E-01 0.408E-01 0.272E-01 0.169E-01 0.101E-01
0.156E-01 0.400E-01 0.266E-01 0.166E-01 0.984E-02
0.391E-02 0.398E-01 0.264E-01 0.165E-01 0.978E-02
DN 0.408E-01 0.272E-01 0.169E-01 0.101E-01
p" 0.588E+00 | 0.683E+00 | 0.750E+00
C;,V 0.151E+01 | 0.151E+01 | 0.141E+01 | 0.126E+01
The order of & -uniform convergence p* = 0.5880695F + 00
Computed £ -uniform error constant, (.p’; = U0.1508601E + 0T

Maximum pointwise errors DV, DV, pV, p*

&
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