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Abstract: In this paper, a system of n singularly perturbed robin type initial value 

problems with discontinuous source terms is considered. The derivative component of 

each equation in the system is multiplied by a same singular perturbation parameter ε. A 

piecewise uniform Shishkin mesh is constructed and used, in conjunction with a classical 

finite difference scheme to form a numerical method for solving this problem. It is proved 

that the numerical approximations generated by this method are essentially first order 

convergent in the maximum norm at all points of the domain, uniformly with respect to 

the singular perturbation parameter. Numerical results are presented in support of the 

theory. 
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1 Introduction 

Consider a system of singularly perturbed robin type initial value problems with dis- 

continuous source terms on the unit interval Ω = (0, 1], assume a single discontinuity 

in the source term at a point d ∈ Ω. Let Ω— = (0, d) and Ω+ = (d, 1] and the jump at 

d in any function is given as [ω](d) = ω(d+) − ω(d−). The corresponding initial value 

probles is to find u1, u2, . . . , un ∈ D = C0(Ω) ∩ C1(Ω— ∪ Ω+), such that 

 

L→ →u(x) = E→ur(x) + A(x)→u(x) = f→(x), x ∈ Ω— ∪ Ω+ 

with the prescribed initial conditions 

 (1) 

β→ →u(0) = →u(0) − ε→ur(0) = φ→ 
  

(2) 

where, E = diag(ε, ε, . . . , ε), →u(x) = (u1(x), u2(x), · · · , un(x))T , 

and f→(x) = (fi(x))n×1. 

A(x) = (aij(x))n×n 

The problem (1) and (2) can also be written in the operator form    

L→ →u = f→ on Ω 
  

(3) 

with 

β→→u(0) = φ→ 

  
 

(4) 

1 
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where the operators L→ , β→ are defined by 

L→ = ED + A, 

d 

 

 

β→ = I − ED 

where I is the identity operator, D = 
dx 

is the first order differential operator. 

 
 

Assumption 1 The functions aij, fi ∈ C(2)(Ω), i, j = 1(1)n satisfy the following posi- 
tivity conditions 

 

(i) aii(x) > 

n 

 

j/=i 
j=1 

 

|aij(x)| for i = 1(1)n 





 


 

 

∀ x ∈ Ω. (5) 

 

Assumption 2 The positive number α satisfy the inequality 

 

0 < α <  min 


Σn
 

aij(x)



 

 
. (6) 

i=1(1)n 
j=1

 

x∈Ω 

Assumption 3 The singular perturbation parameters ε satisfy 0 < ε ≤ 1 is assumed to 
be distinct. 

The above problem is singularly perturbed in the following sense. The reduced problem 

obtained by putting ε = 0 in the system (1) is the linear algebraic system 

A(x)→v(x) = f→(x), x ∈ Ω— ∪ Ω+ (7) 

a11(x) a12(x) · · · a1n(x) 

a21(x) a22(x) · · · a2n(x) 
where A(x) = 

 . 


 

an1(x)  an2(x)  · · · ann(x) 

→v(x) = (v1(x), v2(x), · · · , vn(x))T and f→(x) = (f1(x), f2(x), · · · , fn(x))T . 

 

The source terms f1(x), f2(x), . . . , fn(x) are sufficiently smooth on Ω\{d}. The solu- 

tion components u1, u2, . . . , un of the problem (1) and (2) have overlapping initial layers 

at x = 0 and have overlapping interior layers to the right side of point of discontinuity 

at x = d. 

 

Theorem 1 Let A(x) satisfy (5) and (6). The problem (1) - (2) has a solution →u ∈ D. 

Proof. The proof is by construction. Let →y and →z be the particular solutions of the 

differential equations 

Eyr(x) + A(x)yi(x) = fi(x), i = 1, 2, . . . , n, for all x ∈ Ω— (8) 
 

and  

Ezr(x) + A(x)zi(x) = fi(x), i = 1, 2, . . . , n, for all x ∈ Ω+ (9) 

 

2 

, 

(ii)  aij(x) ≤ 0 for i /= j and i = 1(1)n 
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n 

1 

 

ε 0 0  · · · 0 

0 ε 0 · · · 0 

a11(x) a12(x) · · · a1n(x) 

a21(x) a22(x) · · · a2n(x) 
where E = 

 
, A(x) = 

.   . . . . 
respectively. 

 

0  0  0  · · · ε 

Consider the function 
an1(x)  an2(x)  · · · ann(x) 

 

→u(x) = 
y (x) + β→ (u (0) − y (0))φ (x), i = 1, 2, · · · , n, x ∈ Ω— 
z (x) + B φ (x), i = 1, 2, · · · , n, x ∈ Ω+ 

(10)
 

i i  i 

where φ→ is the solution of 

r → 
i 

βiφi(0) = →1, 

 

i = 1, 2, · · · , n, for all x ∈ Ω. 

Here Bi, i = 1(1)n is chosen so that →u ∈ D. In Ω, 0 < φ→ ≤ 1, there can be no internal 

maximum or minimum for φ→ and hence φr < 0, i = 1(1)n in Ω. Choose the constants 
Bi such that 

→y(d−) = →z(d+)→u(d−) = →u(d+). 

For the constants Bi to exist, it is required that 

[ui(0) − yi(0)]φi(d−) 
/= 0 for i = 1(1)n. 

φ(d+) 
 

Since φi(d+) > 0 is true, the existence of B→ and hence →u is ensured. 

Remark: Throughout this paper, we use C as a generic positive constant vector which 

are independent of the perturbation parameters and the discretization parameter N . 

 

2 Analytical Results 

The operator L→ satisfies the following maximum principle. 

Lemma 1 Let A(x) satisfy (5) and (6). Suppose that a function →u ∈ D satisfies β→ →u (0)  ≥ 

→0, L→ →u(x) ≥ →0 for all x ∈ Ω— ∪ Ω+. Then →u(x) ≥ →0 for all x ∈ Ω. 

Proof. Let ui(pi) = min{ui(x)}, for 1 ≤ i ≤ n. Without loss of generality assume that 
x∈Ω 

u1(p1) ≤ ui(pi), for 2 ≤ i ≤ n. If u1(p1) ≥ 0, then there is nothing to prove. Suppose 
that u1(p1) < 0, then the proof is by showing that this leads to contradiction. Note that 

p1 /= {0}, so either p1 ∈ Ω— ∪ Ω+ or p1 = d. 

Case (i): p1 ∈ Ω— ∪ Ω+, 

β→ →u(0) = →u(0) − ε→ur(0) 

< 0, a contradiction 
 

and  

(L→  →u)1(p1) = εur (p1) + 
Σ 

a1j(p1)uj(p1) 
j=1 

< 0, which is a contradiction. 
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Case (ii): p1 = d, 

since →u ∈ C(Ω) and u1(d) < 0, then there exists a neighbourhood Nh = (d − h, d) 

such that u1(x) < 0 for all x ∈ Nh.  Now choose a point x1 /= d, x1 ∈ Nh such 

that u1(x1) > u1(d).  It follows from the mean value theorem that, for some x2 ∈ 
N , ur (x ) = 

u1(d) − u1(x1) 
< 0, since x ∈ N . 

h 1 2 d − x1 2 h 
Thus by similar argument of the first case, it follows that, 

( L→  →u)1(x2) = εur (x2) + 
Σ 

a1j(x2)uj(x2) < 0. 
j=1 

which is the contradiction. 

As an immediate consequence of the above lemma the stability result is established in 

the following. 

Lemma 2 Let A(x) satisfy (5) and (6). Let →u be the solution of (1) and (2). Then, 

 

||→u(x)|| ≤ max

 

||β→→u(0)||, 
1 

||L→ →u|| − 

 

. 

 

Proof. Define the two functions 

θ→±(x) = max

 

 β→ →u(0) , 
1
 

α 
 L→ →u 

 

 Ω−∪Ω+ 

 
 

  

± →u(x), x ∈ Ω 

θ→±(x) = M ± →u(x) 

where M = max{||β→ →u(0)||, 1 | |L→  →u||Ω−∪Ω+ }. Using the properties of A(x), it is not hard 

to verify that β→θ→±(0) ≥ →0 and L→ θ→±(x) ≥ →0 on Ω— ∪ Ω+. It follows from Lemma 1 

that θ→±(x) ≥ →0 on Ω. Hence, 

|→u(x)| ≤ max

 

||β→→u(0)||, 
1 

||L→ →u|| − 

 

. 

 

Lemma 3 Let A(x) satisfy (5) and (6). Let →u be the solution of (1), (2). Then, for 

each i, i = 1, 2, · · · , n and x ∈ Ω— ∪ Ω+, there exists a constant C such that 

|ui(x)| ≤ C 
n 

 φ→  +  f→  Ω−∪Ω+ 

,

 

|ur (x)| ≤ Cε—1 
n 

  φ→ 

|urr(x)| ≤ Cε—2 
n  

φ→ 

 +  f→ 

 +  f→ 

 Ω−∪Ω+ 

,

 

Ω−∪Ω+ + 

 

 

f→r 
 Ω−∪Ω+ 

,

 

Proof. From Lemma 2, it is evident that, 

|→u(x)| ≤ ||β→ψ→(0)|| + 
1 

| |L→ ψ→|| − . 

 

Thus, 

α Ω ∪Ω+ 

|ui(x)| ≤ C 
n 

 φ→  +  f→  Ω−∪Ω+ 

,

 

 
4 
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Rewrite the differential equation (1), we get 

→ur(x) = E—1(f→ − A→u) 

Hence, |ur (x)| ≤ Cε—1(||φ→|| + ||f→||Ω−∪Ω+ ) 

Differentiating (1) once, we get 

E→ur r(x) + A(x)→ur(x) = f r(x) − Ar(x)→u(x). 

Using the bounds of →u r  and →u 

|→ur(x)| ≤ ε—1[|f→r(x)| + Cε—1(||φ→|| + ||f→||) + C(||φ→|| + ||f→||)] 

and hence,  

|urr(x)| ≤ Cε—2[||f→ r|| + ||φ→ || + ||f→||Ω−∪Ω+ ]. 

3 Estimates of derivatives 

To derive sharper bounds on the derivatives of the solution, the solution is decomposed 

into a sum, composed of a regular component →vand a singular component w→ . That is, 

→u = →v + w→ . The regular component →v is defined as the solution of the following problem: 

L→ →v(x)  = f→(x), x ∈ Ω— ∪ Ω+ 

β→→v(0) = β→→u0(0) (11) 

The singular component w→ is defined as the solution of the following problem 

L→ w→ (x) = →0, x ∈ Ω— ∪ Ω+ 

β→w→ (0) = β→ (→u − →v)(0),  [w→  ](d) = −[→v](d). (12) 

Theorem 2 Let A(x) satisfy (5) and (6). Then the components vi, i = 1(1)n of the 

regular component →v and its derivatives satisfy the bounds for all x ∈ Ω— ∪ Ω+ and 
k = 0, 1, 2, 

||→v(k)||Ω−∪Ω+ ≤ C for k = 0, 1 

|[→v](d)| ≤ C, |[→vr](d)| ≤ C 

||vrr||Ω−∪Ω+ ≤ Cε—1 for i = 1(1)n. 

Proof. Following the techniques in [], one can arrive at the results 

||→v(k)||Ω−∪Ω+ ≤ C for k = 0, 1 

Also for i = 1, 2, · · · , n, 

 

 

and 

 

||vrr||Ω−∪Ω+ ≤ Cε—1 

|[vi](d)| = vi(d+) − vi(d−) ≤ |vi(d+)| + |vi(d−)| ≤ C. 

Similarly, |[→v r](d)| ≤ C, and hence the proof is completed. Now bounds on the layer 
components of →u are to be found. Consider the layer functions 

Bl (x) = e—αx/ε, Br (x) = e—α(x—d)/ε, i = 1(1)n. 
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|wr(x)| ≤ 
 Cε 

Theorem 3 Let A(x) satisfy (5) and (6). Then the components wi, i = 1(1)n of the 

regular component w→ and its derivatives satisfy the bounds for all x ∈ Ω— ∪ Ω+ 

 
|wi(x)| ≤ 

(
CBln (x), x ∈ Ω— 

CBrn 

,
, —1 

Σn
 

(x), x ∈ Ω+ 

— 

i 

Cε—1 Br 
q=i 

(x), x ∈ Ω+ 

 
|wrr(x)| ≤ 

,
,

 n 

Cε 
q=1 n 

Blq (x),  x ∈ Ω 

i 

Cε—1 Br 
q=1 

(x), x ∈ Ω+ 

Proof. We have →u = →v + w→ 

barrier function 
and by Lemma 2 | w→  (0)| ≤ C and | w→  (d+)| ≤ C. Define the 

 

ξ = CBln (x)→e 

with C chosen sufficiently large such that ξ ≥ | w→  | at x = 0, d+, 

 

L→ ξ = CB 

n 

ln 

j=1 

 

 

a1j 

 

— α, 
Σ

j=1 

 

 

a2j 

 

— α, · · · , 
Σ

j=1 

 

 

anj — α



 

≥ →0 = |L→ w→ |Ω− 

and it is not hard to see that β→ ξ(0) ≥ →0. Using maximum principle (1), we get the re- 

quired bounds on w→ . Now to bound first-order derivative of wi, consider εwr + 

0, together with the bound on w→ . This implies that 

n 

 

j=1 

aijwj = 

 
|wr(x)| ≤ 

(
Cε—1Bl (x), x ∈ Ω— 

i Cε—1Br (x), x ∈ Ω+ 

Now to find the sharper bound consider the system of n − 1 equations 

E
→̃

w→̃ r + A
→̃

w→̃  = →h, 

where Ẽ ,  Ã are the matrix obtained by deleting the last row and column from E, A 

respectively and the components of →h are hi = −ainwn, for 1 ≤ i ≤ n − 1. Using the 

bounds derived earlier and the decomposition of w→̃  = →q + →r ,  into regular and singular 
component we get the required result. Now to bound second-order derivatives, differen- 

tiate εwr + 
n 

 

j=1 
aijwj = 0 once and using the estimates of wr, we get the required bounds 

on singular component w→ and its derivatives. 

Lemma 4 For all i, j such that 1 ≤ i ≤ j ≤ n, there exists a unique point xi,j ∈ (0, d) 
such that ε—1Bl (xi,j) = ε—1Bl (xi,j). Also, ε—1Br (d + xi,j) = ε—1Br (d + xi,j). On 

i j i j 

[0, xi,j) we have ε—1Bl (x) > ε—1Bl (x) and on (xi,j, d) we have ε—1Bl (x) < ε—1Bl (x). 
i j i j 

Similarly, on (d, d + xi,j) we have ε—1Br (x) > ε—1Br (x) and on (d + xi,j, 1] we have 
i j 

ε—1Br (x) < ε—1Br (x). 
i j 

 

6 

q=i 
n 

Blq (x),  x ∈ Ω 

q 

— 

q 

n 

n 
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For the analysis of the convergence, a more precise decomposition of the components of 

the singular component w→ is required. The next Lemma provides the necessary estimates 

of decomposed layer functions. 

Theorem 4 The singular component w→ 

1 ≤ i ≤ n : 

can be decomposed in this way as follows, for 

 
n 

 

 

where 

wi(x) = wi,q(x) 

q=1 

 

r 
i,q 

 

(x)| ≤ 

—1 — 
q 

Cε—1Br (x), x ∈ Ω+ 

 

|wrr (x)| ≤ 

—1 — 
q 

Cε—1Br (x), x ∈ Ω+ 

Proof. Define a function wi,1 as follows 

 

 

 

and for 1 < q ≤ n, we have 

n 

wi,1(x) = wi(x) − wi,q(x) 
q=2 

,

, 
Σ2

 

, 

[(x—xq−1,q)k] 
 

k! 

Σn 

 

(k) 

i (xq—1,q), x ∈ [0, xq—1,q), 

wi,q = 



 
wi(x) − 

r=q+1 
wi,r(x), x ∈ [xq—1,q, d), 

2 

 

k=0 

, 

[(x—d—xq−1,q)k] 
 

k! 

Σn 
 

(k) 

i (d + xq—1,q), x ∈ (d, d + xq—1,q), 

Now we establish the bounds on the second derivative. 

For x ∈ [xn—1,n, d] ∪ [d + xn—1,n, 1], 

 

|εwrr (x)| = |εwrr(x)| ≤ Cε—1 
Σ 

Bl (x) ≤ Cε—1Bl 
 

 

 

(x). 

For x ∈ [0, xn—1,n) ∪ (d, d + xn—1,n), 

 

|εwrr (x)| = |εwrr(xn—1,n)| ≤ Cε—1 
Σ 

Bl (xn—1,n) ≤ Cε—1Bl 
 

 

 

(xn—1,n) ≤ Cε—1Bl 

 

(x). 

Now for each 2 ≥ q ≥ n − 1, it follows that 

For x ∈ [xq—1,q, d) ∪ [d + xq—1,q, 1], 

 

 

For x ∈ [0, xq—1,q) ∪ (d, d + xq—1,q], 

wrr (x) = 0. 

|εwrr (x)| = |εwrr(xq—1,q)| ≤ Cε—1 
Σ 

Bl (xq—1,q) ≤ Cε—1Bl (xq—1,q) ≤ Cε—1Bl (x). 

 

7 

q=1 

q=1 

|w 

wi,r(x), x ∈ [d + xq—1,q, 1] 

n 

n n 

w 

w 

Shagi/ Steps Journal (2412-9410)|| Volume 26 Issue 1 2023 || http://shagisteps.science

Page No: 7



 

 

i,q i,q 

j=0 

2 

 

i,1 i i,q q 1 

n 
2 α 

n 
2 α 

r 
2 α 

r 
2 α 

 

For x ∈ [x1,2, d) ∪ [d + x1,2, 1], 

 

 

For x ∈ [0, x1,2) ∪ (d, d + x1,2], 

 

 

rr 
i,1 

 

 

(x) = 0. 

n n 

|εwrr (x)| = |εwrr(x) − 
Σ 

εwrr (x)| ≤ Cε—1 
Σ 

Bl (x) ≤ Cε—1Bl (x). 

 

For the bounds on the first derivatives we have the relation 

|wr (x)| = 
 
∫ 

xq,q+1 

wrr (t)dt —1 
∫ 

xq,q+1 
 

Blq (t)dt ≤ Cε—1 

 

Blq (x). 
x x 

4 The Shishkin mesh 

A piecewise uniform mesh with N mesh-intervals is constructed and mesh points {xj}N 

are obtained by dividing the interval Ω into 2n + 2 sub-intervals as follows. 
 

Ω = [0, σ1] ∪ (σ1, σ2] · · · (σn—1, σn] ∪ (σn, d] ∪ (d, d + τ1] ∪ (d + τ1, d + τ2] ∪ · · · (d + τn—1, d + τn] ∪ (d + τn, 1]. 

where σ1, σ2, . . . , σn, τ1, τ2, . . . , τn are the transition parameters satisfying 

d 
0 < σ1 < σ2 < · · · < σn ≤ 

2 
and d < τ1 < τ2 < · · · < τn ≤ 

The interior points of the mesh are denoted by 

1 − d 
. 

2 

 

ΩN =

  

xi : 1 ≤ i ≤ 
N 

− 1

  

∪

  

x 

 

: 
N 

+ 1 ≤ i ≤ N − 1 = Ω—N ∪ Ω+N 
2 

 

Let hi = xi — xi—1 be the ith mesh step and hi = 
hi + hi+1 

, clearly x 
2 2 

N 

= d. Then 

on the sub-intervals [0, σ1] and [d, d + τ1] a uniform mesh with 
22n 

mesh intervals are 

placed and similarly on (σk, σk+1], (d + τk, d + τk+1], 1 ≤ k ≤ n − 1, a uniform mesh 
N 

with 
22n—2k+2 

mesh intervals and on (σn, d] and (d + τn, 1] a uniform mesh of 

intervals are placed. 

The 2n transition points between the uniform meshes are defined by 

N 
 mesh 

4 

σ  = min

  
d

, 
ε 

ln N

  

, τ = min

  
1 − d

, 
ε 

ln N

 

 

and for r = n − 1, . . . , 2, 1, 

σ = min 
n σr+1 

, 
ε 

ln N 
, 

, τ = min 
n τr+1 

, 
ε 

ln N 
,
 

This construction leads to a class of 22n piecewise uniform Shishkin meshes. 
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≤ Cε 
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5 The Discrete Problem 

The Initial Value Problem (1), (2) is discretised using a fitted mesh method composed 
 

Nof a classical finite difference operator on a piecewise uniform fitted mesh Ω . Then the 

fitted mesh method for solving the system (1) and (2) is, for i = 1, 2, . . . , n, 

( L→  N U→ ) (x ) = ED—U→ (x ) + A(x ) U→  (x ) = f→(x ), j /= 
N

 
 

(13) 

 

with 

i j j j j j 
2

 

β→U→ (0) = U→ (0) — εD+ U→ (0) = φ→ (14) 

and at x N 

2 

= d, the scheme is given by 

L→ N U→ (x N ) = ED—U→ (x N ) + A(x N ) U→  (x N ) = f→(x N — 1). 
2 2 2 2 2 

The problem (13), (14) can also be written in the operator form 

LN U→ = f→ on ΩN with 

β→ N U→ (0) = φ→ 

where LN = ED— + A with 

β→ N = I — εD+I 

and D+, D— are the difference operators 

D—U→ (x ) = 
U→ (xj ) — U→ (xj—1) 

, D + U→  (x ) = 
U→ (xj+1) — U→ (xj ) 

, j = 1, 2, . . . , N. 
j 

xj — xj—1 
j 

xj+1 — xj 

The following discrete results are analogous to those for the continuous case. 

Lemma 5 Let A(x) satisfy (5) and (6). Suppose that a mesh function Z→ (xj) satisfies 

β→Z→ (x0) ≥ →0 and L→ N Z→ (xj) ≥ →0, for all xj ∈ ΩN and (D+ — D—) Z→  (x N ) ≤ →0, implies that 
2 

Z→ (xj) ≥ →0 for all xj ∈ Ω. 

Proof. Let xq be any point at which Z→ (xq) attains its minimum on Ω 

 

N . If Z→ (x ) ≥ →0, 
then there is nothing to prove. Without loss of generality, Suppose that Z1(xq) < 0, 

then clearly, xq /= 0. If xq = 0, then 

β→ N Z→ (0) = Z→ (0) — εD+Z→ (0) 

< 0, a contradiction. 

Therefore, xq /= 0. If q /= N/2, it is clear that 

D—Z1(xq) ≤ 0 ≤ D+Z1(xq) 

and hence if xq ∈ ΩN , q /= N/2, then 

( L→  N Z→ )1(xq) = εD—Z(xq) + a11(xq)Z1(xq) + · · · + a1n(xq)Zn(xq) < 0 

9 
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2 

j 
α 

Ω−N ∪Ω+N 

j 
α 

j 

which is a contradiction. Hence, the only possiblity is that xq = x N . Then 
2 

D—Z1(x N ) ≤ 0 ≤ D+Z1(x N ) ≤ D—Z1(x N ). 
2 2 2 

From the above it is observed that 

Z1(x N —1) = Z1(x N ) = Z1(x N +1) < 0 
2 2 2 

then, ( L→  N Z→ )1(x N —1) < 0, which is a cotradiction. Hence the result. 

Lemma 6 Let A(x) satisfy (5) and (6). If U→ 

then 

be the numerical solution of (1) and (2), 

||U→ (x )|| ≤ max

 

| |β→ U→  (0)||, 
1 

||f→|| 

 

. 
 

Proof. Define the two mesh functions 

Θ→ ±(x ) = max

 

||β→ N Ψ→ (0)||, 
1 

||f→|| 

   

± U→ (x ). 

 

Using the properties of A(x), it is not hard to verify that β→ N  Θ→ ±(0) ≥ →0 and LN Θ→ ± ≥ →0 

on ΩN . Applying the discrete maximum principle (Lemma 5) then gives Θ→ ± ≥ →0 on 
N 

Ω  , and so 
| U→  (x )| ≤ max

 

||β→ N Ψ→ (0)||, 
1 

||f→|| 
j 

 

as required. 

α Ω−N ∪Ω+N 

 

6 The Local Truncation Error 

From Lemma 6, it is seen that in order to bound the error | |U→  — →u| | ,  it suffices to bound 

L→ N ( U→  — →u ) .  Notice that, for xj ∈ ΩN , 

L→ N ( U→  (xj) — →u(xj )) = L→ N U→ (xj) — L→ N →u(xj ) 

= E(D— — D)→u(xj ) 
 

and 
 

( ( L→  — L→ N )u)i(xj) = ε(D— — D)vi(xj) + ε(D— — D)wi(xj) 

which is the local truncation of the first derivative. Then, by the triangle inequality, 

| (L→  N ( U→  — →u))i(xj )| ≤ |ε(D— — D)vi(xj)| + |ε(D— — D)wi(xj)|. 

Analogous to the continuous case, the discrete solution U→ can be decomposed into V→ 

and W→ which are defined to be solutions of the following discrete problems 

( L→  N V→ )(xj) = f→(xj) on ΩN , β→ N  V→ (0) = β→ →v(0) (15) 
 

and 

( L→  N W→ )(xj) = →0 on ΩN , β→ N  W→ (0) = β→w→ (0) (16) 

 

10 

Ω
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j j j 

2 

i 

s∈Ij 
i 

, 
r 

where →v and w→ are the solutions of (11) and (12) respectively. 

Further, for i = 1, 2, . . . , n, 

|(β→ N (V→  — →v))i(0)| = |(D — D+)vi(0)| 

|(β→ N (W→ — w→ ))i(0)| = |(D — D+)wi(0)| 

|(L→  N (V→  — →v))i(xj)| = |ε(D— — D)vi(xj)| (17) 

| ( L→  N (W→ — w→ ))i(xj)| = |ε(D— — D)wi(xj)|. (18) 
 

The error at each point x ∈ Ω
N 

is denoted by U→ (x )— →u (x  ). Then the local truncation 

error L→ N ( U→  (xj) — →u(xj )) has the decomposition 

L→ N (U→  — →u)(xj) = L→ N (V→  — →v)(xj) + L→ N (W→ — w→ )(xj). 

By a Taylor expansion on regular and singular components, we have 

|ε

  
d 

— D—

 

v (x )| ≤ Cε 
(xj — xj—1) 

|v | ≤ CN —1 (19) 

 
and 

dx k j 2 
k 2 

  
d 

,
Cε 

(xj —xj−1) |wk|2
 

 
 

|ε  — D— 
dx 

wk(xj)| ≤ 
2 

Cε  max 
[xj,xj−1] 

|wk| 
(20) 

where k = 1, 2, . . . , n, j /= N . 

The error in the smooth and singular components are bounded in the following section. 

 

7 Error Analysis 

The proof of the theorem on the error estimate is split into two parts. First, a theorem 

concerning the error in the smooth component is established. Then the error in the 

singular component is established. 

Theorem 5 Let A(x) satisfy (5) and (6). Let →v denote the smooth component of the 

solution of (1), (2) and V→ 

(13), (14). Then 

denote the smooth component of the solution of the problem 

| (L→  N ( V→  — →v))i(xj )| ≤ CN —1 

Proof. From the expression (19), 

|(β→N (V→  — →v)i(0)| ≤ C(x1 — x0)  max 
s∈[x0,x1] 

 

|vrr(s)| (21) 

 

It is not hard to find that 

≤ CN —1 

 ε(D— — D)vi(xj) ≤ Chj max |εvrr(s)| 
 

 
 

 
as required. 

≤ CN —1 

 

11 
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n 

i 

≤ hiε 
Σ 

Bl (x) 

 Σ 

 Σ Σ 
i,q 

i j 
εq 

i 

q=i 

Lemma 7 Let A(x) satisfy (5) and (6). Let w→ denote the smooth component of the 

solution of (1), (2) and W→ 

(13), (14). Then 

denote the smooth component of the solution of the problem 

| ( L→  N (W→ — w→ ))i(xj)| ≤ CN —1 ln N 

Proof. For the proof of this theorem, we have to evaluate the error estimates for the 

singular components on different subintervals considered as follows: 

Case (i): For xj ∈ [σn, d) ∪ [d + τn, 1]. 
 

From the expression (20), 

|(β→N (W→ 

 

— w→ ))i(0)| ≤ Cε(x1 — x0) max |wrr| 
[x0,x1] 

≤ CN —1 ln N 

Using (20) and bounds on singular components, we have for i = 1, 2, . . . , n 

|((L→ N — L→ ) w→  ) (x )| ≤ Cε 
Σ Blq (x)

 

≤ C||Bln ||[xi−1,xi] = Bln (xi—1) 

≤ CN —1. 

Similar arguments prove a similar result for the subinterval [d + τn, 1]. Hence, for 

xj ∈ [σn, d) ∪ [d + τn, 1] we have 

|((L→ N — L→ )w→  )i(xj)| ≤ CN —1. 

Case (ii): For xj ∈ (0, σ1] ∪ (d, d + τ1]. 

Using (20) and bounds on singular components yields 

|((L→  N — L→ ) w→  )i(xj)| ≤ C(xi — xi—1)||εwrr|| 
n 

—1 
q 

q=1 

≤ CN —1 ln N. 

Case (iii): For xj ∈ (σr, σr+1) ∪ (d + τr, d + τr+1), where 1 ≤ r ≤ n — 1. 

Using the decomposition in Theorem 4 of singular components and bounds on sin- 

gular components gives 

 
→N → n—1   

d
   

d —

 

|((L — L)w→  )i(xj)| = 

  

ε — D 
dx 

q=1 

wi,q(xj) + ε 
dx 

— D wi,n(xj)  . (22) 

  

Consider the first part of (22) and using the bounds on singular components, we obtain 

n—1 
 

 
 q=1 

d 
— D— 

dx 

 

wi,q(xj)
  

≤ || 

n—1 

 

q=1 

 

εwrr ||[x 

 

 

 

i−1 

 

 

,xi] 

≤ CBln−1 (xi—1) 

≤ CN —1. 
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 Σ 

 Σ Σ 

 Σ Σ 

i i i 
2 2 

≤ CN —1 ln N. 

Using the bounds on singular components for the second part of (22), we have 

 ε

  
d

  
— D—

 

w 
hi rr (x )  ≤ ||εw || 

 

dx 
i,n j 

 

 

2 
i,n  

Case (iv): For xj ∈ {σr, d + τr}, where 1 ≤ r ≤ n — 1. 

Using the decomposition of the singular components and bounds on singular com- 

ponents defined in Theorem 4 gives 

 
→N → 

 

n—1   
d

   
d —

 

|((L — L)w→  )i(xj)| = 

  

ε — D 
dx 

q=1 

wi,q(xj) + ε 
dx 

— D wi,n(xj)  . (23) 

  

Consider the first part of (23) for the case i ≤ r, and using the bounds on singular 
components, we obtain 

 

n—1 
 

 
 q=1 

d 
— D— 

dx 
wi,q(xj)

  
≤ || 

n—1 

 

q=1 

 

r 
i,q 

 

||[x 

 

 

i−1 

 

,xi] 

 

 

and if i > r, using the bounds on singular components and the analysis in Case (i), we 

have 
 

n—1 
 

 
 q=1 

d 
— D— 

dx 
wi,q(xj)

  
≤ || 

n—1 

 

q=1 

 

r 
i,q 

 

||[x 

 

 

i−1 

 

,xi] 

 

 

For the second part of (23), use bounds on singular components defined in Theorem 4, 

to obtain 

 ε

  
d

 
— D—

 

w (x ) ≤ Ch ||εwrr || 
 

dx 
i,n j r i,n 

 

 
 

Now at the point x N 

2 

= d, 

 

|(L→ N (U→  — →u)) (d)| ≤ Cεh+ max 

 

|urr(η)| + Cεh— max |urr(θ)| where 

(
x N

 
< η < x N +1, 

[x N ,x N 
+1

] [x N 
−1

,x N ] x N —1 < θ < x N 
2 2 2 2 2 2 

n n 

≤ Cε—1σ1N —1 
Σ 

Bq(η) + Cε—1N —1 
Σ 

Bq(θ) 
q=1 

≤ Cε—1σ1N —1 + Cε—1N —1Bn(θ) 

≤ CN —1 ln N. 

q=1 

We conclude this section with the following main result which follows by using the error 

analysis for the regular and singular components, and the discrete maximum principle. 
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ε 

≤ CN —1. 

ε 

≤ CN —1. 

≤ CN —1 ln N. 

 

εw 

 

εw 

— 
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Theorem 6 Let →u be the solution of the continuous problem (1), (2) and U→ 

solution of the discrete problem (13), (14). Thus, for N sufficiently large, 

||(LN ( U→  — →u))|| ≤ CN —1 ln N 

where C is a constant independent of ε and N. 

Proof. Consider the two mesh functions 

be the 

 

θ±(xj) = 
CN —1 ln N (1 + 2xj) ± L→ N (Ui(xj) — ui(xj)), j ≤ N 

CN —1 ln N (d + xj) ± L→ N (Ui(xj) — ui(xj)), j > N 

where C is suitably chosen sufficiently large constant. Hence for j < N , it is not hard 

to verify that (β→ N θ→±)i(0) ≥ →0 and 

n 

( L→  N θ→±)i(xj) = CεN —1 ln N + CN —1 ln N (1 + 2xj) aip(xj) ± L→ N (Ui(xj) — ui(xj)) 
p=1 

n 

> CN —1 ln aip(xj) ± L→ N (Ui(xj) — ui(xj)) 
p=1 

> CN —1 ln Nα ± CN —1 ln N 

≥ 0 

and for j > N , 

n 

( L→  N θ→±)i(xj) = CεN —1 ln N + CN —1 ln N (d + xj) aip(xj) ± L→ N (Ui(xj) — ui(xj)) 
p=1 

 

 

 

 

 

 

And for j = N 

n 

> CN —1 ln aip(xj) ± L→ N (Ui(xj) — ui(xj)) 
p=1 

> CN —1 ln Nα ± CN —1 ln N 

≥ 0. 

 

 
(d + x N + h+ — 1 — 2x N ) 

 

 

 

 

 

 

 
(1 + x N ) — (1 + x N — h—) 

( L→  N θ→±)i(x N ) = CN —1 ln N  2 2  — CN —1 ln N  2 2 
 

2 h+ h— 

—1 (h+ — 1) —1 1 

= CN ln N — CN ln N ± CN ln N 
h+ 

≤ 0. 
 

Thus, for N sufficiently large, 
 

||U→ — →u|| ≤ CN —1 ln N 

which completes the proof. 
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8 Numerical Illustration 

The numerical method proposed above is illustrated through an example presented in 

this section. 

Example 1 Consider the following singularly perturbed robin type initial value problems 

with discontinuous source terms 

εur (x) + (2 + x)u1(x) — u2(x) — u3(x) = f1(x), x ∈ Ω— ∪ Ω+ 

εur (x) — u1(x) + 4u2(x) — u3(x) = f2(x), x ∈ Ω— ∪ Ω+ 

εur (x) — u1(x) — u2(x) + (4 + ex)u3(x) = f3(x), x ∈ Ω— ∪ Ω+ 

with 

βu1(0) = 1, βu2(0) = 1, βu3(0) = 1, 
 

where 

1 for 0 ≤ x ≤ 0.5 
1 

1 for 0.5 ≤ x ≤ 1, 

 

3 for 0 ≤ x ≤ 0.5 
2 

0.5 for 0.5 ≤ x ≤ 1, 

 

2 for 0 ≤ x ≤ 0.5 
3 

1 for 0.5 ≤ x ≤ 1, 

The exact solution of the test example is not known. Therefore, we estimate the error 
→ →˜ 

for U by comparing it to the numerical solution U obtained on the mesh x̃ j  that contains 

the mesh points of the original and their midpoints. For different values of N and the 

parameter ε, we compute 
DN → →˜ 

ε = ||U — U (xi)||Ω. 

The numerical solution obtained by applying the fitted mesh method (13) and (14) to 

the Example is shown in Figure 1. The order of convergence and the error constant are 

calculated and are presented in Table 1. 
 

η Number of mesh points N 
 72 144 288 576 

0.100E+01 0.190E-01 0.104E-01 0.547E-02 0.280E-02 

0.250E+00 0.389E-01 0.222E-01 0.117E-01 0.605E-02 

0.625E-01 0.408E-01 0.272E-01 0.169E-01 0.101E-01 

0.156E-01 0.400E-01 0.266E-01 0.166E-01 0.984E-02 

0.391E-02 0.398E-01 0.264E-01 0.165E-01 0.978E-02 

DN 0.408E-01 0.272E-01 0.169E-01 0.101E-01 

pN 0.588E+00 0.683E+00 0.750E+00  

CN 
p 0.151E+01 0.151E+01 0.141E+01 0.126E+01 

The order of →ε -uniform convergence p∗ = 0.5880695E + 00 
Computed →ε -uniform error constant, CN = 0.1508601E + 01 

p∗ 

 

Table 1: Maximum pointwise errors  DN , DN , pN , p∗ and  CN generated for the 

example. 
ε p∗ 
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